Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella.

Details

Ressource 1Download: 1745.full.pdf (3550.09 [Ko])
State: Public
Version: Final published version
Serval ID
serval:BIB_8855542139E7
Type
Article: article from journal or magazin.
Collection
Publications
Title
Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella.
Journal
Journal of Experimental Medicine
Author(s)
Broz P., Newton K., Lamkanfi M., Mariathasan S., Dixit V.M., Monack D.M.
ISSN
1540-9538 (Electronic)
ISSN-L
0022-1007
Publication state
Published
Issued date
2010
Peer-reviewed
Oui
Volume
207
Number
8
Pages
1745-1755
Language
english
Abstract
Intracellular pathogens and endogenous danger signals in the cytosol engage NOD-like receptors (NLRs), which assemble inflammasome complexes to activate caspase-1 and promote the release of proinflammatory cytokines IL-1beta and IL-18. However, the NLRs that respond to microbial pathogens in vivo are poorly defined. We show that the NLRs NLRP3 and NLRC4 both activate caspase-1 in response to Salmonella typhimurium. Responding to distinct bacterial triggers, NLRP3 and NLRC4 recruited ASC and caspase-1 into a single cytoplasmic focus, which served as the site of pro-IL-1beta processing. Consistent with an important role for both NLRP3 and NLRC4 in innate immune defense against S. typhimurium, mice lacking both NLRs were markedly more susceptible to infection. These results reveal unexpected redundancy among NLRs in host defense against intracellular pathogens in vivo.

Keywords
Animal Structures/microbiology, Animals, Apoptosis Regulatory Proteins/genetics, Bacterial Proteins/genetics, Blood/microbiology, CARD Signaling Adaptor Proteins, Calcium-Binding Proteins/genetics, Carrier Proteins/genetics, Caspase 1/genetics, Caspase 1/metabolism, Caspase Inhibitors, Cysteine Proteinase Inhibitors/pharmacology, Cytoplasmic Structures/drug effects, Cytoplasmic Structures/genetics, Cytoplasmic Structures/immunology, Cytoplasmic Structures/metabolism, Cytoskeletal Proteins/genetics, Cytoskeletal Proteins/metabolism, Flagellin/genetics, Immunity, Innate/physiology, Interleukin-1/metabolism, Interleukin-18/blood, Interleukin-18/metabolism, Interleukin-1beta/blood, Interleukin-1beta/metabolism, Macrophages/metabolism, Macrophages/microbiology, Membrane Proteins/genetics, Mice, Mice, Inbred Strains, Mice, Knockout, Models, Immunological, NLR Family, Pyrin Domain-Containing 3 Protein, Protein Precursors/metabolism, Protein Transport/genetics, Protein Transport/immunology, Salmonella Infections/immunology, Salmonella Infections/microbiology, Salmonella typhimurium/genetics, Salmonella typhimurium/immunology
Pubmed
Web of science
Open Access
Yes
Create date
25/10/2017 11:05
Last modification date
20/08/2019 15:47
Usage data