The loss of self-incompatibility in a range expansion.

Details

Serval ID
serval:BIB_835E44B6B381
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The loss of self-incompatibility in a range expansion.
Journal
Journal of evolutionary biology
Author(s)
Encinas-Viso F., Young A.G., Pannell J.R.
ISSN
1420-9101 (Electronic)
ISSN-L
1010-061X
Publication state
Published
Issued date
09/2020
Peer-reviewed
Oui
Volume
33
Number
9
Pages
1235-1244
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self-incompatible species, for self-compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual-based simulations of a range expansion, in which inbreeding depression, variation in self-incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range-marginal populations. Under conditions of high recombination between the self-incompatibility locus (S-locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self-incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination.‬.
Keywords
Biological Evolution, Inbreeding Depression, Models, Genetic, Plant Dispersal, Plant Infertility/genetics, Self-Fertilization, Baker's law, colonization, dispersal, inbreeding depression, metapopulation, migration, reproductive assurance, self-compatibility, selfing
Pubmed
Web of science
Create date
13/07/2021 11:52
Last modification date
17/07/2021 6:36
Usage data