Improving generalized regression analysis for the spatial prediction of forest communities

Details

Serval ID
serval:BIB_77C248EC79AC
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Improving generalized regression analysis for the spatial prediction of forest communities
Journal
Journal of Biogeography
Author(s)
Maggini R., Lehmann A., Zimmermann N. E., Guisan A.
ISSN
0305-0270
Publication state
Published
Issued date
2006
Peer-reviewed
Oui
Volume
33
Number
10
Pages
1729-1749
Language
english
Notes
Workshop on Generalized Regression Analyses and Spatial Predictions Riederalp, SWITZERLAND, AUG, 2004
Abstract
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model.
Location State of Vaud, western Switzerland.
Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp).
Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once.
Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Keywords
cross-validation, forest communities, generalized additive models, generalized regression analysis, potential distribution modelling, predictor interactions, receiver operating characteristic, spatial autocorrelation, spatial predictions, stepwise selection methods
Web of science
Create date
24/01/2008 20:06
Last modification date
20/08/2019 15:34
Usage data