Cross-modality synthesis of EM time series and live fluorescence imaging.
Details
Request a copy Under indefinite embargo.
UNIL restricted access
State: Public
Version: author
License: CC BY 4.0
UNIL restricted access
State: Public
Version: author
License: CC BY 4.0
Serval ID
serval:BIB_755570EF144E
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Cross-modality synthesis of EM time series and live fluorescence imaging.
Journal
eLife
ISSN
2050-084X (Electronic)
ISSN-L
2050-084X
Publication state
Published
Issued date
06/06/2022
Peer-reviewed
Oui
Volume
11
Pages
e77918
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Publication Status: epublish
Abstract
Analyses across imaging modalities allow the integration of complementary spatiotemporal information about brain development, structure, and function. However, systematic atlasing across modalities is limited by challenges to effective image alignment. We combine highly spatially resolved electron microscopy (EM) and highly temporally resolved time-lapse fluorescence microscopy (FM) to examine the emergence of a complex nervous system in Caenorhabditis elegans embryogenesis. We generate an EM time series at four classic developmental stages and create a landmark-based co-optimization algorithm for cross-modality image alignment, which handles developmental heterochrony among datasets to achieve accurate single-cell level alignment. Synthesis based on the EM series and time-lapse FM series carrying different cell-specific markers reveals critical dynamic behaviors across scales of identifiable individual cells in the emergence of the primary neuropil, the nerve ring, as well as a major sensory organ, the amphid. Our study paves the way for systematic cross-modality data synthesis in C. elegans and demonstrates a powerful approach that may be applied broadly.
Keywords
Animals, Caenorhabditis elegans, Microscopy, Electron, Microscopy, Fluorescence/methods, Optical Imaging/methods, Time Factors, C. elegans, alignment, developmental biology, electron microscopy, fluorescence microscopy, multi-modal imaging, neuroscience
Pubmed
Web of science
Open Access
Yes
Create date
05/07/2022 8:17
Last modification date
29/07/2022 5:38