Characterization of the Morphological and Molecular Changes Associated with Diabetic Peripheral Neuropathy in Type 2 Diabetes

Details

Serval ID
serval:BIB_6FB255DF3CE2
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Collection
Publications
Institution
Title
Characterization of the Morphological and Molecular Changes Associated with Diabetic Peripheral Neuropathy in Type 2 Diabetes
Title of the conference
9th European Meeting on Glial Cells in Health and Disease
Author(s)
Zenker J., Charles A.S. de Preux , Arnaud E., Medard J.J., Chrast R.
Address
Paris, France, September 08-12, 2009
ISBN
0894-1491
Publication state
Published
Issued date
2009
Peer-reviewed
Oui
Volume
57
Series
Glia
Pages
31
Language
english
Notes
Meeting Abstract
Abstract
More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.
Web of science
Create date
04/12/2009 9:37
Last modification date
20/08/2019 15:28
Usage data