Record of a dense succession of drowning phases in the Alpstein mountains, north-eastern Switzerland: part I—the Lower Cretaceous Tierwis Formation (latest Hauterivian to latest Barremian)
Details
Request a copy Under indefinite embargo.
UNIL restricted access
State: Public
Version: author
License: CC BY 4.0
UNIL restricted access
State: Public
Version: author
License: CC BY 4.0
Serval ID
serval:BIB_6FAD79860F11
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Record of a dense succession of drowning phases in the Alpstein mountains, north-eastern Switzerland: part I—the Lower Cretaceous Tierwis Formation (latest Hauterivian to latest Barremian)
Journal
Swiss Journal of Geosciences
ISSN
1661-8726
1661-8734
1661-8734
Publication state
Published
Issued date
12/2022
Peer-reviewed
Oui
Volume
115
Number
1
Language
english
Abstract
In the Alpstein massif of north-eastern Switzerland, a complete succession of uppermost Hauterivian to uppermost Barremian condensed hemipelagic sediments crops out. This succession is known as Tierwis Formation, comprising in ascending order, the Altmann and Drusberg members. The sedimentary succession bears a number of fossiliferous glauconite- or phosphate-rich beds. A large number of newly discovered ammonites from these key beds and from several poorly explored levels of the Tierwis Formation allows for a new age calibration. The new dating as well
as revised sequence stratigraphic interpretations and geochemistry contribute to a better understanding of the lithostratigraphic complexity of the Tierwis Formation and its spatio-temporal relationship with the Schrattenkalk Formation. The new lithostratigraphic observations, backed by ammonites, shows that the Altmann type-section and the Tierwis paratype-section do not cover the same stratigraphic interval because of dynamic sedimentation processes as erosion and sedimentation in submarine channels. We suggest that a phosphatic conglomerate in the Dursberg
Member of middle late Barremian age corresponds to the Chopf Bed, which we recognised for the first time in the Alsptein massif. The Drusberg Member strongly thickens toward the southeast and progressively covers an upward extended stratigraphic range. Furthermore, the new dating of the key-surfaces and beds highlight a dense succession of drowning phases which occurred through the latest Hauterivian to late Barremian time interval. The latest Hauterivian onset of the glauconite-rich sedimentation of the Altmann Member is associated with a first major drowning
phase, followed by the Faraoni oceanic anoxic event. The change of sedimentation to a rhythmic marl-limestone alternation of the Drusberg Member takes place over a polyzonal phosphatic conglomerate. This conglomerate coincides with a second major drowning phase and the onset of the Mid-Barremian Event, which is calibrated on the Tethyan ammonite biozonation.
as revised sequence stratigraphic interpretations and geochemistry contribute to a better understanding of the lithostratigraphic complexity of the Tierwis Formation and its spatio-temporal relationship with the Schrattenkalk Formation. The new lithostratigraphic observations, backed by ammonites, shows that the Altmann type-section and the Tierwis paratype-section do not cover the same stratigraphic interval because of dynamic sedimentation processes as erosion and sedimentation in submarine channels. We suggest that a phosphatic conglomerate in the Dursberg
Member of middle late Barremian age corresponds to the Chopf Bed, which we recognised for the first time in the Alsptein massif. The Drusberg Member strongly thickens toward the southeast and progressively covers an upward extended stratigraphic range. Furthermore, the new dating of the key-surfaces and beds highlight a dense succession of drowning phases which occurred through the latest Hauterivian to late Barremian time interval. The latest Hauterivian onset of the glauconite-rich sedimentation of the Altmann Member is associated with a first major drowning
phase, followed by the Faraoni oceanic anoxic event. The change of sedimentation to a rhythmic marl-limestone alternation of the Drusberg Member takes place over a polyzonal phosphatic conglomerate. This conglomerate coincides with a second major drowning phase and the onset of the Mid-Barremian Event, which is calibrated on the Tethyan ammonite biozonation.
Keywords
Helvetic Domain, Säntis nappe, Biostratigraphy, Sedimentology, Hauterivian, Barremian
Web of science
Open Access
Yes
Create date
15/02/2023 9:22
Last modification date
06/12/2023 8:28