The role of gene duplication in the origin and evolution of new biological functions

Details

Request a copy
Serval ID
serval:BIB_6D3126180377
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
The role of gene duplication in the origin and evolution of new biological functions
Author(s)
Marques A. C.
Director(s)
Kaessmann H.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Faculté de biologie et de médecine Université de Lausanne UNIL - Bugnon Rue du Bugnon 21 - bureau 4111 CH-1015 Lausanne SUISSE
Publication state
Accepted
Issued date
2008
Language
english
Number of pages
131
Notes
REROID:R004657473 ill.
Abstract
Abstract :
Gene duplication is an essential source of material for the origin of genetic novelty and the evolution of lineage- or species-specific phenotypic traits.
The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with a significant number of gene copies during the last ~63 million years (MYA) of primate evolution. We estimated that at least 1 new functional gene (retrogene) per MYA emerged by retroposition in the primate lineage leading to humans. Using a combination of comparative sequencing and evolutionary simulations, we obtained strong evidence of functionality for 7 primate specific retrogenes. Most of these genes are specifically expressed in testis suggesting that retroposition has contributed with genetic raw material necessary for the evolution ofmale-specific functions in primates.
We characterized CDC14Bretro (identified in the previous survey) that originated from the retroposition of a cell cycle gene - CDC14B - in the common ancestor of humans and apes. We demonstrate that CDC14Bretro experienced a period of intense positive selection in the African ape ancestor. By virtue of the amino acid substitutions that occurred during this period CDC 14Bretro adapted to a new subcellular compartment in African apes. Further analyses indicate that this subcellular shift reflects the evolution of anew functional role of CDC 14Bretro.
Prompted by this result, we used yeast (Saccharomyces cerevisiae) to investigate on a global scale the extent of functional diversification of duplicate genes through the subcellular adaptation of their encoded proteins. We found that duplicate proteins frequently evolved new cellular localization patterns, either by partitioning of ancestral localizations ("sublocalization"), or more frequently by relocalization to previously unoccupied compartments ("neolocalization"). Interestingly, proteins involved in processes with a wider subcellular distribution more frequently evolved new localization patterns suggesting that subcellular localization changes are dependent on progenitor gene functions. Relocated proteins adapted to their new subcellular environments and evolved new functional roles through changes of their physio-chemical properties, expression levels, and interaction partners. Our work suggests an important role of subcellular adaptation for the emergence of new gene functions.
Create date
24/06/2010 8:55
Last modification date
20/08/2019 15:26
Usage data