NAD+ Metabolism Restriction Boosts High-Dose Melphalan Efficacy in Patients with Multiple Myeloma.
Details
Serval ID
serval:BIB_6A1D49B7E1D9
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
NAD+ Metabolism Restriction Boosts High-Dose Melphalan Efficacy in Patients with Multiple Myeloma.
Journal
Blood advances
ISSN
2473-9537 (Electronic)
ISSN-L
2473-9529
Publication state
In Press
Peer-reviewed
Oui
Language
english
Notes
Publication types: Journal Article
Publication Status: aheadofprint
Publication Status: aheadofprint
Abstract
Elevated levels of the nicotinamide adenine dinucleotide (NAD+)-generating enzyme nicotinamide phosphoribosyltransferase (NAMPT) are a common feature across numerous cancer types. Accordingly, we previously reported pervasive NAD+ dysregulation in Multiple Myeloma (MM) cells in association with upregulated NAMPT expression. Unfortunately, albeit being effective in preclinical models of cancer, NAMPT inhibition has proven ineffective in clinical trials due to the existence of alternative NAD+ production routes utilizing NAD+ precursors other than nicotinamide. Here, by leveraging mathematical modelling approaches integrated with transcriptome data, we defined the specific NAD+ landscape of MM cells and established that the Preiss-Handler pathway for NAD+-biosynthesis, which utilizes nicotinic acid as a precursor, supports NAD+ synthesis in MM cells via its key enzyme nicotinate phosphoribosyltransferase (NAPRT). Accordingly, we found that NAPRT confers resistance to NAD+ -depleting agents. Transcriptomic, metabolic, and bioenergetic profiling of NAPRT knock-out (KO) MM cells showed these to have weakened endogenous antioxidant defenses, increased propensity to oxidative stress, and enhanced genomic instability. Concomitant NAMPT inhibition further compounded the effects of NAPRT KO, effectively sensitizing MM cells to the chemotherapeutic drug, melphalan; NAPRT added-back fully rescues these phenotypes. Overall, our results propose comprehensive NAD+ biosynthesis inhibition, through simultaneously targeting NAMPT and NAPRT, as a promising strategy to be tested in randomized clinical trials involving transplant-eligible MM patients, especially those with more aggressive disease.
Pubmed
Open Access
Yes
Create date
13/12/2024 13:44
Last modification date
14/12/2024 7:21