MAR elements and transposons for improved transgene integration and expression.

Détails

Ressource 1Télécharger: BIB_689882DD46E1.P001.pdf (1350.84 [Ko])
Etat: Public
Version: de l'auteur
ID Serval
serval:BIB_689882DD46E1
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
MAR elements and transposons for improved transgene integration and expression.
Périodique
PLoS One
Auteur(s)
Ley D., Harraghy N., Le Fourn V., Bire S., Girod P.A., Regamey A., Rouleux-Bonnin F., Bigot Y., Mermod N.
ISSN
1932-6203 (Electronic)
ISSN-L
1932-6203
Statut éditorial
Publié
Date de publication
2013
Volume
8
Numéro
4
Pages
e62784
Langue
anglais
Résumé
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1-68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1-68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2-4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Mots-clé
Animals, CHO Cells, Cricetulus, DNA Transposable Elements/genetics, Electroporation, Gene Dosage, Gene Expression, Gene Expression Regulation, Gene Order, Genetic Vectors/genetics, Matrix Attachment Regions/genetics, Recombinant Proteins/genetics, Recombinant Proteins/metabolism, Transgenes
Pubmed
Web of science
Open Access
Oui
Création de la notice
28/01/2014 12:33
Dernière modification de la notice
20/08/2019 14:23
Données d'usage