Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies

Details

Serval ID
serval:BIB_5E95C69F4A48
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Spatially‐nested hierarchical species distribution models to overcome niche truncation in national‐scale studies
Journal
Ecography
Author(s)
Goicolea T., Adde A., Broennimann O., García-Viñas J.I., Gastón A., José Aroca-Fernández M., Guisan A., G. Mateo R.
ISSN
0906-7590
1600-0587
Publication state
Published
Issued date
21/05/2024
Peer-reviewed
Oui
Pages
e07328
Language
english
Abstract
Spatial truncation in species distribution models (SDMs) might cause niche truncation and model transferability issues, particularly when extrapolating models to non-analog environmental conditions. While broad calibration extents reduce truncation issues, they usually overlook local ecological factors driving species distributions at finer resolution. Spatially-nested hierarchical SDMs (HSDMs) address truncation by merging (a) a global model calibrated with broadly extended, yet typically low-resolution, basic, and imprecise data; and (b) a regional model calibrated with spatially restricted but more precise and reliable data. This study aimed to examine HSDMs' efficacy to overcome spatial truncation in national-scale studies. We compared two hierarchical strategies (‘covariate', which uses the global model output as a covariate for the regional model, and ‘multiply', which calculates the geometric mean of the global and regional models) and a non-hierarchical strategy. The three strategies were compared in terms of niche truncation, environmental extrapolation, model performance, species' predicted distributions and shifts, and trends in species richness. We examined the consistency of the results over two study areas (Spain and Switzerland), 108 tree species, and four future climate scenarios. Only the non-hierarchical strategy was susceptible to niche truncation, and environmental extrapolation issues. Hierarchical strategies, particularly the ‘covariate' one, presented greater model accuracy than non-hierarchical strategies. The non-hierarchical strategy predicted the highest overall values and the lowest decreases over time in species distribution ranges and richness. Differences between strategies were more evident in Switzerland, which was more affected by niche truncation issues. Spain was more negatively affected by climate change and environmental extrapolation. The ‘covariate' strategy exhibited higher model performance than the ‘multiply' one. However, uncertainties regarding model temporal transferability advocate for adopting and further examining multiple hierarchical approaches. This research underscores the importance of adopting spatially-nested hierarchical SDMs given the compromised reliability of non-hierarchical approaches due to niche truncation and extrapolation issues.
Web of science
Open Access
Yes
Create date
21/08/2024 13:30
Last modification date
22/08/2024 6:17
Usage data