Repeated Double-Poling Sprint Training in Hypoxia by Competitive Cross-country Skiers.

Details

Serval ID
serval:BIB_5D238D311526
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Repeated Double-Poling Sprint Training in Hypoxia by Competitive Cross-country Skiers.
Journal
Medicine and Science In Sports and Exercise
Author(s)
Faiss R., Willis S., Born D.P., Sperlich B., Vesin J.M., Holmberg H.C., Millet G.P.
ISSN
1530-0315 (Electronic)
ISSN-L
0195-9131
Publication state
Published
Issued date
2015
Peer-reviewed
Oui
Volume
47
Number
4
Pages
809-817
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
PURPOSE: Repeated-sprint training in hypoxia (RSH) was recently shown to improve repeated-sprint ability (RSA) in cycling. This phenomenon is likely to reflect fiber type-dependent, compensatory vasodilation, and therefore, our hypothesis was that RSH is even more beneficial for activities involving upper body muscles, such as double poling during cross-country skiing.
METHODS: In a double-blinded fashion, 17 competitive cross-country skiers performed six sessions of repeated sprints (each consisting of four sets of five 10-s sprints, with 20-s intervals of recovery) either in normoxia (RSN, 300 m; FiO2, 20.9%; n = 8) or normobaric hypoxia (RSH, 3000 m; FiO2, 13.8 %; n = 9). Before (pre) and after (post) training, performance was evaluated with an RSA test (10-s all-out sprints-20-s recovery, until peak power output declined by 30%) and a simulated team sprint (team sprint, 3 × 3-min all-out with 3-min rest) on a double-poling ergometer. Triceps brachii oxygenation was measured by near-infrared spectroscopy.
RESULTS: From pretraining to posttraining, peak power output in the RSA was increased (P < 0.01) to the same extent (29% ± 13% vs 26% ± 18%, nonsignificant) in RSH and in RSN whereas the number of sprints performed was enhanced in RSH (10.9 ± 5.2 vs 17.1 ± 6.8, P < 0.01) but not in RSN (11.6 ± 5.3 vs 11.7 ± 4.3, nonsignificant). In addition, the amplitude in total hemoglobin variations during sprints throughout RSA rose more in RSH (P < 0.01). Similarly, the average power output during all team sprints improved by 11% ± 9% in RSH and 15% ± 7% in RSN.
CONCLUSIONS: Our findings reveal greater improvement in the performance of repeated double-poling sprints, together with larger variations in the perfusion of upper body muscles in RSH compared with those in RSN.
Pubmed
Web of science
Create date
06/08/2014 19:41
Last modification date
20/08/2019 15:15
Usage data