Venom gland organogenesis in the common house spider.

Details

Serval ID
serval:BIB_5CC7A3E6A5D3
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Venom gland organogenesis in the common house spider.
Journal
Scientific reports
Author(s)
Hassan A., Blakeley G., McGregor A.P., Zancolli G.
ISSN
2045-2322 (Electronic)
ISSN-L
2045-2322
Publication state
Published
Issued date
04/07/2024
Peer-reviewed
Oui
Volume
14
Number
1
Pages
15379
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.
Keywords
Animals, Spiders/embryology, Spiders/metabolism, Organogenesis, Spider Venoms/metabolism, Gene Expression Regulation, Developmental, Exocrine Glands/metabolism, Exocrine Glands/embryology, Developmental origins, Evolutionary innovation, HCR, Spiders, Toxins
Pubmed
Open Access
Yes
Create date
11/07/2024 16:30
Last modification date
12/07/2024 7:04
Usage data