Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care.

Details

Serval ID
serval:BIB_54157B4C09A1
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Pooled individual patient data from five countries were used to derive a clinical prediction rule for coronary artery disease in primary care.
Journal
Journal of clinical epidemiology
Author(s)
Aerts M., Minalu G., Bösner S., Buntinx F., Burnand B., Haasenritter J., Herzig L., Knottnerus J.A., Nilsson S., Renier W., Sox C., Sox H., Donner-Banzhoff N.
Working group(s)
International Working Group on Chest Pain in Primary Care (INTERCHEST)
ISSN
1878-5921 (Electronic)
ISSN-L
0895-4356
Publication state
Published
Issued date
01/2017
Peer-reviewed
Oui
Volume
81
Pages
120-128
Language
english
Notes
Publication types: Journal Article ; Meta-Analysis
Publication Status: ppublish
Abstract
To construct a clinical prediction rule for coronary artery disease (CAD) presenting with chest pain in primary care.
Meta-Analysis using 3,099 patients from five studies. To identify candidate predictors, we used random forest trees, multiple imputation of missing values, and logistic regression within individual studies. To generate a prediction rule on the pooled data, we applied a regression model that took account of the differing standard data sets collected by the five studies.
The most parsimonious rule included six equally weighted predictors: age ≥55 (males) or ≥65 (females) (+1); attending physician suspected a serious diagnosis (+1); history of CAD (+1); pain brought on by exertion (+1); pain feels like "pressure" (+1); pain reproducible by palpation (-1). CAD was considered absent if the prediction score is <2. The area under the ROC curve was 0.84. We applied this rule to a study setting with a CAD prevalence of 13.2% using a prediction score cutoff of <2 (i.e., -1, 0, or +1). When the score was <2, the probability of CAD was 2.1% (95% CI: 1.1-3.9%); when the score was ≥ 2, it was 43.0% (95% CI: 35.8-50.4%).
Clinical prediction rules are a key strategy for individualizing care. Large data sets based on electronic health records from diverse sites create opportunities for improving their internal and external validity. Our patient-level meta-analysis from five primary care sites should improve external validity. Our strategy for addressing site-to-site systematic variation in missing data should improve internal validity. Using principles derived from decision theory, we also discuss the problem of setting the cutoff prediction score for taking action.

Keywords
Adult, Chest Pain/etiology, Coronary Artery Disease/complications, Coronary Artery Disease/diagnosis, Decision Support Techniques, Female, Humans, Male, Middle Aged, Primary Health Care/methods, ROC Curve, Sensitivity and Specificity, Chest pain, Individual patient data meta-analysis, Medical history taking, Myocardial ischemia, Primary health care, Sensitivity and specificity, Symptom assessment
Pubmed
Web of science
Create date
01/11/2016 19:10
Last modification date
20/08/2019 14:09
Usage data