Dynamic 3D genome reorganization during senescence: defining cell states through chromatin.
Details
Serval ID
serval:BIB_50916437809C
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Dynamic 3D genome reorganization during senescence: defining cell states through chromatin.
Journal
Cell death and differentiation
ISSN
1476-5403 (Electronic)
ISSN-L
1350-9047
Publication state
In Press
Peer-reviewed
Oui
Language
english
Notes
Publication types: Journal Article ; Review
Publication Status: aheadofprint
Publication Status: aheadofprint
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Pubmed
Web of science
Open Access
Yes
Create date
19/09/2023 9:38
Last modification date
09/12/2023 7:04