Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis.

Details

Ressource 1Download: 38451304_BIB_504D8E660504.pdf (7112.27 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_504D8E660504
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ): Rationale and Study Design of the Largest Global Prospective Cohort Study of Clinical High Risk for Psychosis.
Journal
Schizophrenia bulletin
Author(s)
Wannan CMJ, Nelson B., Addington J., Allott K., Anticevic A., Arango C., Baker J.T., Bearden C.E., Billah T., Bouix S., Broome M.R., Buccilli K., Cadenhead K.S., Calkins M.E., Cannon T.D., Cecci G., Chen EYH, Cho KIK, Choi J., Clark S.R., Coleman M.J., Conus P., Corcoran C.M., Cornblatt B.A., Diaz-Caneja C.M., Dwyer D., Ebdrup B.H., Ellman L.M., Fusar-Poli P., Galindo L., Gaspar P.A., Gerber C., Glenthøj L.B., Glynn R., Harms M.P., Horton L.E., Kahn R.S., Kambeitz J., Kambeitz-Ilankovic L., Kane J.M., Kapur T., Keshavan M.S., Kim S.W., Koutsouleris N., Kubicki M., Kwon J.S., Langbein K., Lewandowski K.E., Light G.A., Mamah D., Marcy P.J., Mathalon D.H., McGorry P.D., Mittal V.A., Nordentoft M., Nunez A., Pasternak O., Pearlson G.D., Perez J., Perkins D.O., Powers A.R., Roalf D.R., Sabb F.W., Schiffman J., Shah J.L., Smesny S., Spark J., Stone W.S., Strauss G.P., Tamayo Z., Torous J., Upthegrove R., Vangel M., Verma S., Wang J., Rossum I.W., Wolf D.H., Wolff P., Wood S.J., Yung A.R., Agurto C., Alvarez-Jimenez M., Amminger P., Armando M., Asgari-Targhi A., Cahill J., Carrión R.E., Castro E., Cetin-Karayumak S., Mallar Chakravarty M., Cho Y.T., Cotter D., D'Alfonso S., Ennis M., Fadnavis S., Fonteneau C., Gao C., Gupta T., Gur R.E., Gur R.C., Hamilton H.K., Hoftman G.D., Jacobs G.R., Jarcho J., Ji J.L., Kohler C.G., Lalousis P.A., Lavoie S., Lepage M., Liebenthal E., Mervis J., Murty V., Nicholas S.C., Ning L., Penzel N., Poldrack R., Polosecki P., Pratt D.N., Rabin R., Rahimi Eichi H., Rathi Y., Reichenberg A., Reinen J., Rogers J., Ruiz-Yu B., Scott I., Seitz-Holland J., Srihari V.H., Srivastava A., Thompson A., Turetsky B.I., Walsh B.C., Whitford T., Wigman JTW, Yao B., Yuen H.P., Ahmed U., Byun AJS, Chung Y., Do K., Hendricks L., Huynh K., Jeffries C., Lane E., Langholm C., Lin E., Mantua V., Santorelli G., Ruparel K., Zoupou E., Adasme T., Addamo L., Adery L., Ali M., Auther A., Aversa S., Baek S.H., Bates K., Bathery A., Bayer JMM, Beedham R., Bilgrami Z., Birch S., Bonoldi I., Borders O., Borgatti R., Brown L., Bruna A., Carrington H., Castillo-Passi R.I., Chen J., Cheng N., Ching A.E., Clifford C., Colton B.L., Contreras P., Corral S., Damiani S., Done M., Estradé A., Etuka B.A., Formica M., Furlan R., Geljic M., Germano C., Getachew R., Goncalves M., Haidar A., Hartmann J., Jo A., John O., Kerins S., Kerr M., Kesselring I., Kim H., Kim N., Kinney K., Krcmar M., Kotler E., Lafanechere M., Lee C., Llerena J., Markiewicz C., Matnejl P., Maturana A., Mavambu A., Mayol-Troncoso R., McDonnell A., McGowan A., McLaughlin D., McIlhenny R., McQueen B., Mebrahtu Y., Mensi M., Hui CLM, Suen Y.N., Wong SMY, Morrell N., Omar M., Partridge A., Phassouliotis C., Pichiecchio A., Politi P., Porter C., Provenzani U., Prunier N., Raj J., Ray S., Rayner V., Reyes M., Reynolds K., Rush S., Salinas C., Shetty J., Snowball C., Tod S., Turra-Fariña G., Valle D., Veale S., Whitson S., Wickham A., Youn S., Zamorano F., Zavaglia E., Zinberg J., Woods S.W., Shenton M.E.
ISSN
1745-1701 (Electronic)
ISSN-L
0586-7614
Publication state
Published
Issued date
30/04/2024
Peer-reviewed
Oui
Volume
50
Number
3
Pages
496-512
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, N.I.H., Extramural
Publication Status: ppublish
Abstract
This article describes the rationale, aims, and methodology of the Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ). This is the largest international collaboration to date that will develop algorithms to predict trajectories and outcomes of individuals at clinical high risk (CHR) for psychosis and to advance the development and use of novel pharmacological interventions for CHR individuals. We present a description of the participating research networks and the data processing analysis and coordination center, their processes for data harmonization across 43 sites from 13 participating countries (recruitment across North America, Australia, Europe, Asia, and South America), data flow and quality assessment processes, data analyses, and the transfer of data to the National Institute of Mental Health (NIMH) Data Archive (NDA) for use by the research community. In an expected sample of approximately 2000 CHR individuals and 640 matched healthy controls, AMP SCZ will collect clinical, environmental, and cognitive data along with multimodal biomarkers, including neuroimaging, electrophysiology, fluid biospecimens, speech and facial expression samples, novel measures derived from digital health technologies including smartphone-based daily surveys, and passive sensing as well as actigraphy. The study will investigate a range of clinical outcomes over a 2-year period, including transition to psychosis, remission or persistence of CHR status, attenuated positive symptoms, persistent negative symptoms, mood and anxiety symptoms, and psychosocial functioning. The global reach of AMP SCZ and its harmonized innovative methods promise to catalyze the development of new treatments to address critical unmet clinical and public health needs in CHR individuals.
Keywords
Humans, Psychotic Disorders, Schizophrenia, Prospective Studies, Adult, Prodromal Symptoms, Young Adult, International Cooperation, Adolescent, Research Design/standards, Male, Female, clinical high risk, consortium, early detection, prediction, prevention, psychosis
Pubmed
Web of science
Open Access
Yes
Create date
11/03/2024 11:01
Last modification date
09/08/2024 14:59
Usage data