Mechanical, Cardiorespiratory, and Muscular Oxygenation Responses to Sprint Interval Exercises Under Different Hypoxic Conditions in Healthy Moderately Trained Men.

Details

Ressource 1Download: fphys-12-773950.pdf (924.52 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_4CD28E556758
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Mechanical, Cardiorespiratory, and Muscular Oxygenation Responses to Sprint Interval Exercises Under Different Hypoxic Conditions in Healthy Moderately Trained Men.
Journal
Frontiers in physiology
Author(s)
Solsona R., Berthelot H., Borrani F., Sanchez AMJ
ISSN
1664-042X (Print)
ISSN-L
1664-042X
Publication state
Published
Issued date
2021
Peer-reviewed
Oui
Volume
12
Pages
773950
Language
english
Abstract
Objective: The aim of this study was to determine the effects of sprint interval exercises (SIT) conducted under different conditions (hypoxia and blood flow restriction [BFR]) on mechanical, cardiorespiratory, and muscular O <sub>2</sub> extraction responses. Methods: For this purpose, 13 healthy moderately trained men completed five bouts of 30 s all-out exercises interspaced by 4 min resting periods with lower limb bilateral BFR at 60% of the femoral artery occlusive pressure (BFR <sub>60</sub> ) during the first 2 min of recovery, with gravity-induced BFR (pedaling in supine position; G-BFR), in a hypoxic chamber (FiO <sub>2</sub> ≈13%; HYP) or without additional stress (NOR). Peak and average power, time to achieve peak power, rating of perceived exertion (RPE), and a fatigue index (FI) were analyzed. Gas exchanges and muscular oxygenation were measured by metabolic cart and NIRS, respectively. Heart rate (HR) and peripheral oxygen saturation (SpO <sub>2</sub> ) were continuously recorded. Results: Regarding mechanical responses, peak and average power decreased after each sprint (p < 0.001) excepting between sprints four and five. Time to reach peak power increased between the three first sprints and sprint number five (p < 0.001). RPE increased throughout the exercises (p < 0.001). Of note, peak and average power, time to achieve peak power and RPE were lower in G-BFR (p < 0.001). Results also showed that SpO <sub>2</sub> decreased in the last sprints for all the conditions and was lower for HYP (p < 0.001). In addition, Δ[O <sub>2</sub> Hb] increased in the last two sprints (p < 0.001). Concerning cardiorespiratory parameters, BFR <sub>60</sub> application induced a decrease in gas exchange rates, which increased after its release compared to the other conditions (p < 0.001). Moreover, muscle blood concentration was higher for BFR <sub>60</sub> (p < 0.001). Importantly, average and peak oxygen consumption and muscular oxyhemoglobin availability during sprints decreased for HYP (p < 0.001). Finally, the tissue saturation index was lower in G-BFR. Conclusions: Thus, SIT associated with G-BFR displayed lower mechanical, cardiorespiratory responses, and skeletal muscle oxygenation than the other conditions. Exercise with BFR <sub>60</sub> promotes higher blood accumulation within working muscles, suggesting that BFR <sub>60</sub> may additionally affect cellular stress. In addition, HYP and G-BFR induced local hypoxia with higher levels for G-BFR when considering both exercise bouts and recovery periods.
Keywords
blood flow restriction (BFR), exhaustive exercise, gravity-induced blood flow restriction, hypoxia, oxygen extraction, skeletal muscle, supine exercise, vascular occlusion
Pubmed
Web of science
Open Access
Yes
Create date
21/01/2022 18:16
Last modification date
18/08/2023 7:10
Usage data