The Impact of Tumor Treating Fields on Glioblastoma Progression Patterns.
Details
Download: 34963556.pdf (1493.45 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_4C099FBD4AC4
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The Impact of Tumor Treating Fields on Glioblastoma Progression Patterns.
Journal
International journal of radiation oncology, biology, physics
ISSN
1879-355X (Electronic)
ISSN-L
0360-3016
Publication state
Published
Issued date
01/04/2022
Peer-reviewed
Oui
Volume
112
Number
5
Pages
1269-1278
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
Tumor-treating fields (TTFields) are an antimitotic treatment modality that interfere with glioblastoma (GBM) cell division and organelle assembly by delivering low-intensity, alternating electric fields to the tumor. A previous analysis from the pivotal EF-14 trial demonstrated a clear correlation between TTFields dose density at the tumor bed and survival in patients treated with TTFields. This study tests the hypothesis that the antimitotic effects of TTFields result in measurable changes in the location and patterns of progression of newly diagnosed GBM.
Magnetic resonance images of 428 newly diagnosed GBM patients who participated in the pivotal EF-14 trial were reviewed, and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields-treated patients were created, and TTFields intensity distributions were calculated using a finite element method. The TTFields dose was calculated within regions of the tumor bed and normal brain, and its relationship with progression was determined.
Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at greater distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared with normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of the enhancing tumor that returned to normal was significantly higher than in the areas of the normal brain that progressed to enhancing tumor.
There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize the TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.
Magnetic resonance images of 428 newly diagnosed GBM patients who participated in the pivotal EF-14 trial were reviewed, and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields-treated patients were created, and TTFields intensity distributions were calculated using a finite element method. The TTFields dose was calculated within regions of the tumor bed and normal brain, and its relationship with progression was determined.
Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at greater distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared with normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of the enhancing tumor that returned to normal was significantly higher than in the areas of the normal brain that progressed to enhancing tumor.
There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize the TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.
Keywords
Glioblastoma, MRI, TTFields, TTFields dose, Tumor progression
Pubmed
Web of science
Open Access
Yes
Create date
03/01/2022 15:34
Last modification date
27/08/2024 6:24