A multidimensional segmentation evaluation for medical image data.

Details

Serval ID
serval:BIB_4B41FE89B911
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A multidimensional segmentation evaluation for medical image data.
Journal
Computer Methods and Programs in Biomedicine
Author(s)
Cárdenes R., de Luis-García R., Bach-Cuadra M.
ISSN
1872-7565 (Electronic)
ISSN-L
0169-2607
Publication state
Published
Issued date
2009
Volume
96
Number
2
Pages
108-124
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
Evaluation of segmentation methods is a crucial aspect in image processing, especially in the medical imaging field, where small differences between segmented regions in the anatomy can be of paramount importance. Usually, segmentation evaluation is based on a measure that depends on the number of segmented voxels inside and outside of some reference regions that are called gold standards. Although some other measures have been also used, in this work we propose a set of new similarity measures, based on different features, such as the location and intensity values of the misclassified voxels, and the connectivity and the boundaries of the segmented data. Using the multidimensional information provided by these measures, we propose a new evaluation method whose results are visualized applying a Principal Component Analysis of the data, obtaining a simplified graphical method to compare different segmentation results. We have carried out an intensive study using several classic segmentation methods applied to a set of MRI simulated data of the brain with several noise and RF inhomogeneity levels, and also to real data, showing that the new measures proposed here and the results that we have obtained from the multidimensional evaluation, improve the robustness of the evaluation and provides better understanding about the difference between segmentation methods.
Keywords
Algorithms, Artificial Intelligence, Brain/anatomy & histology, Humans, Image Enhancement/methods, Image Interpretation, Computer-Assisted/methods, Imaging, Three-Dimensional/methods, Magnetic Resonance Imaging/methods, Pattern Recognition, Automated/methods, Reproducibility of Results, Sensitivity and Specificity
Pubmed
Web of science
Create date
02/09/2010 14:16
Last modification date
20/08/2019 13:59
Usage data