Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype.
Details
Serval ID
serval:BIB_494CBB480254
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype.
Journal
The Journal of clinical investigation
ISSN
1558-8238 (Electronic)
ISSN-L
0021-9738
Publication state
Published
Issued date
03/10/2016
Peer-reviewed
Oui
Volume
126
Number
10
Pages
3868-3878
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
Reducing expression of the fetal hemoglobin (HbF) repressor BCL11A leads to a simultaneous increase in γ-globin expression and reduction in β-globin expression. Thus, there is interest in targeting BCL11A as a treatment for β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia. Here, we found that using optimized shRNAs embedded within an miRNA (shRNAmiR) architecture to achieve ubiquitous knockdown of BCL11A profoundly impaired long-term engraftment of both human and mouse hematopoietic stem cells (HSCs) despite a reduction in nonspecific cellular toxicities. BCL11A knockdown was associated with a substantial increase in S/G2-phase human HSCs after engraftment into immunodeficient (NSG) mice, a phenotype that is associated with HSC exhaustion. Lineage-specific, shRNAmiR-mediated suppression of BCL11A in erythroid cells led to stable long-term engraftment of gene-modified cells. Transduced primary normal or SCD human HSCs expressing the lineage-specific BCL11A shRNAmiR gave rise to erythroid cells with up to 90% reduction of BCL11A protein. These erythrocytes demonstrated 60%-70% γ-chain expression (vs. < 10% for negative control) and a corresponding increase in HbF. Transplantation of gene-modified murine HSCs from Berkeley sickle cell mice led to a substantial improvement of sickle-associated hemolytic anemia and reticulocytosis, key pathophysiological biomarkers of SCD. These data form the basis for a clinical trial application for treating sickle cell disease.
Pubmed
Web of science
Create date
27/10/2016 13:43
Last modification date
20/08/2019 13:56