Modulation of the Na,K-pump function by beta subunit isoforms

Details

Serval ID
serval:BIB_4923FD70080B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Modulation of the Na,K-pump function by beta subunit isoforms
Journal
Journal of General Physiology
Author(s)
Jaisser  F., Jaunin  P., Geering  K., Rossier  B. C., Horisberger  J. D.
ISSN
0022-1295 (Print)
Publication state
Published
Issued date
04/1994
Volume
103
Number
4
Pages
605-23
Notes
Journal Article
Research Support, Non-U.S. Gov't --- Old month value: Apr
Abstract
To study the role of the Na,K-ATPase beta subunit in the ion transport activity, we have coexpressed the Bufo alpha 1 subunit (alpha 1) with three different isotypes of beta subunits, the Bufo Na,K-ATPase beta 1 (beta 1NaK) or beta 3 (beta 3NaK) subunit or the beta subunit of the rabbit gastric H,K-ATPase (beta HK), by cRNA injection in Xenopus oocyte. We studied the K+ activation kinetics by measuring the Na,K-pump current induced by external K+ under voltage clamp conditions. The endogenous oocyte Na,K-ATPase was selectively inhibited, taking advantage of the large difference in ouabain sensitivity between Xenopus and Bufo Na,K pumps. The K+ half-activation constant (K1/2) was higher in the alpha 1 beta 3NaK than in the alpha 1 beta 1NaK groups in the presence of external Na+, but there was no significant difference in the absence of external Na+. Association of alpha 1 and beta HK subunits produced active Na,K pumps with a much lower apparent affinity for K+ both in the presence and in the absence of external Na+. The voltage dependence of the K1/2 for external K+ was similar with the three beta subunits. Our results indicate that the beta subunit has a significant influence on the ion transport activity of the Na,K pump. The small structural differences between the beta 1NaK and beta 3NaK subunits results in a difference of the apparent affinity for K+ that is measurable only in the presence of external Na+, and thus appears not to be directly related to the K+ binding site. In contrast, association of an alpha 1 subunit with a beta HK subunit results in a Na,K pump in which the K+ binding or translocating mechanisms are altered since the apparent affinity for external K+ is affected even in the absence of external Na+.
Keywords
Animals Biotransformation/drug effects Bufo marinus Electrophysiology Isomerism Kinetics Na(+)-K(+)-Exchanging ATPase/drug effects/*physiology Oocytes/enzymology Ouabain/pharmacology Potassium/pharmacology RNA, Complementary/biosynthesis Rabbits Sodium/physiology Xenopus
Pubmed
Web of science
Open Access
Yes
Create date
24/01/2008 13:28
Last modification date
20/08/2019 14:56
Usage data