N-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa.
Details
Serval ID
serval:BIB_48F4C436808F
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
N-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa.
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424 (Print)
ISSN-L
0027-8424
Publication state
Published
Issued date
1986
Volume
83
Number
13
Pages
4937-4941
Language
english
Abstract
Arginine-nonutilizing (aru) mutants of Pseudomonas aeruginosa strain PAO converted L-arginine to N(2)-succinylarginine or N-succinylglutamate, which were identified by high-voltage electrophoresis and HPLC. Addition of aminooxyacetate, an inhibitor of pyridoxal phosphate-dependent enzymes, to resting cells of the wild-type PAO1 in arginine medium led to the accumulation of N(2)-succinylornithine. Enzyme assays with crude P. aeruginosa extracts established the following pathway: L-arginine + succinyl-CoA --> N(2)-succinylarginine --> N(2)-succinylornithine --> N_succinylglutamate 5-semialdehyde --> N-succinylglutamate --> succinate + glutamate. Succinyl-CoA may be regenerated from glutamate via 2-ketoglutarate. L-Arginine induced the enzymes of the pathway, and succinate caused catabolite repression. Purified N(2)-acetylornithine 5-aminotransferase (N(2)-acetyl-L-ornithine: 2-oxoglutarate aminotransferase, EC 2.6.1.11), an arginine biosynthetic enzyme, efficiently transaminated N(2)-succinylornithine; this explains the enzyme's dual role in arginine biosynthesis and catabolism. The succinylarginine pathway enables P. aeruginosa to utilize arginine efficiently as a carbon source under aerobic conditions, whereas the other three arginine catabolic pathways previously established in P. aeruginosa fulfill different functions.
Pubmed
Web of science
Open Access
Yes
Create date
25/01/2008 17:01
Last modification date
20/08/2019 13:56