MRI and (1)H-MRS in adenosine kinase deficiency.

Details

Serval ID
serval:BIB_48C1CF31646A
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
MRI and (1)H-MRS in adenosine kinase deficiency.
Journal
Neuroradiology
Author(s)
Staufner C., Blom H.J., Dionisi-Vici C., Freisinger P., Makhseed N., Ballhausen D., Kölker S., Hoffmann G.F., Harting I.
ISSN
1432-1920 (Electronic)
ISSN-L
0028-3940
Publication state
Published
Issued date
07/2016
Peer-reviewed
Oui
Volume
58
Number
7
Pages
697-703
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
Adenosine kinase deficiency (ADK deficiency) is a recently described disorder of methionine and adenosine metabolism resulting in a neurological phenotype with developmental delay, muscular hypotonia, and epilepsy as well as variable systemic manifestations. The underlying neuropathology is poorly understood. We have investigated MRI and (1)H-MRS changes in ADK deficiency in order to better understand the in vivo neuropathologic changes of ADK deficiency.
Systematic evaluation of 21 MRIs from eight patients (age range 9 days-14.6 years, mean 3.9 years, median 2.7 years) including diffusion-weighted imaging in six and (1)H-MRS in five patients.
Brain maturation was delayed in the neonatal period and in infancy (6/6), but ultimately complete. White matter changes occurring in five of eight patients were discrete, periventricular, and unspecific (4/5), or diffuse with sparing of optic radiation, corona radiata, and pyramidal tracts (1/5). Choline was low in white matter spectra (3/3), while there was no indication of low creatine in white matter or basal ganglia (5/5), and diffusion was variably decreased or increased. Central tegmental tract hyperintensity was a common finding (6/8), as was supratentorial atrophy (6/8).
MRI changes in ADK deficiency consist of delayed but ultimately completed brain maturation with later onset of mostly unspecific white matter changes and potentially transient central tegmental tract hyperintensity. Immaturity on neonatal MRI is consistent with prenatal onset of disease and reduced choline with lower membrane turnover resulting in delayed myelination and deficient myelin maintenance.

Keywords
Adenosine Kinase/deficiency, Adenosine Kinase/metabolism, Adolescent, Brain/metabolism, Brain/pathology, Brain Diseases, Metabolic/enzymology, Brain Diseases, Metabolic/pathology, Child, Child, Preschool, Female, Humans, Infant, Infant, Newborn, Magnetic Resonance Imaging/methods, Male, Molecular Imaging/methods, Proton Magnetic Resonance Spectroscopy/methods, Reproducibility of Results, Sensitivity and Specificity, Adenosine kinase deficiency, Brain maturation, Diffusion-weighted imaging, Magnetic resonance spectroscopy, Neurometabolic disorders
Pubmed
Web of science
Create date
10/04/2016 13:59
Last modification date
20/08/2019 13:55
Usage data