CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology.
Details
Serval ID
serval:BIB_483D54F3B66F
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology.
Journal
European journal of human genetics
ISSN
1476-5438 (Electronic)
ISSN-L
1018-4813
Publication state
Published
Issued date
11/2023
Peer-reviewed
Oui
Volume
31
Number
11
Pages
1251-1260
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, N.I.H., Extramural
Publication Status: ppublish
Publication Status: ppublish
Abstract
Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1 <sup>+/-</sup> mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1 <sup>+/-</sup> mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1 <sup>+/-</sup> mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1 <sup>+/-</sup> brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.
Keywords
Adult, Animals, Humans, Mice, Heterozygote, Homeodomain Proteins/genetics, Intellectual Disability/genetics, Intellectual Disability/diagnosis, Neurodevelopmental Disorders/genetics, Neurodevelopmental Disorders/pathology, Phenotype, Repressor Proteins/genetics, Seizures, Transcription Factors/genetics, Transcription Factors/metabolism
Pubmed
Web of science
Open Access
Yes
Create date
19/09/2023 9:23
Last modification date
08/08/2024 6:32