The lncRNA Sweetheart regulates compensatory cardiac hypertrophy after myocardial injury in murine males.

Details

Serval ID
serval:BIB_4004918FE9A6
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The lncRNA Sweetheart regulates compensatory cardiac hypertrophy after myocardial injury in murine males.
Journal
Nature communications
Author(s)
Rogala S., Ali T., Melissari M.T., Währisch S., Schuster P., Sarre A., Emídio R.C., Boettger T., Rogg E.M., Kaur J., Krishnan J., Dumbović G., Dimmeler S., Ounzain S., Pedrazzini T., Herrmann B.G., Grote P.
ISSN
2041-1723 (Electronic)
ISSN-L
2041-1723
Publication state
Published
Issued date
02/11/2023
Peer-reviewed
Oui
Volume
14
Number
1
Pages
7024
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Abstract
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Keywords
Male, Mice, Animals, RNA, Long Noncoding/genetics, RNA, Long Noncoding/metabolism, Myocytes, Cardiac/metabolism, Cardiomegaly/genetics, Cardiomegaly/metabolism, Myocardial Infarction/metabolism, Heart Injuries
Pubmed
Open Access
Yes
Create date
07/11/2023 13:26
Last modification date
20/12/2023 8:14
Usage data