Improving Energy-Efficiency of Scientific Computing Clusters

Détails

ID Serval
serval:BIB_3FE2B0E26467
Type
Partie de livre
Collection
Publications
Titre
Improving Energy-Efficiency of Scientific Computing Clusters
Titre du livre
Industrial Engineering: Concepts, Methodologies, Tools, and Applications
Auteur(s)
Niemi T., Kommeri J., Hameri A.-P.
Editeur
IGI Global
Lieu d'édition
Hershey, Pennsylvania
ISBN
9781466619456
1466619457
Statut éditorial
Publié
Date de publication
2013
Numéro de chapitre
103
Pages
1916-1933
Langue
anglais
Résumé
The authors applied operations management principles on scheduling and allocation to scientific computing clusters to decrease energy consumption and to increase throughput. They challenged the traditional one job per one processor core scheduling method commonly used in scientific computing with parallel processing and bottleneck management. The authors tested the effect of increased parallelism by using different test applications related to high-energy physics computing. The test results showed that at best their methods both decreased energy consumption down to 40% and increased throughput up to 100%, compared to the standard one task per CPU core method. The trade-off is that processing times of individual tasks get longer, but in scientific computing, the overall throughput and energy-efficiency are often more important.
Création de la notice
02/05/2017 14:07
Dernière modification de la notice
21/08/2019 5:14
Données d'usage