Assessing sedimentary evolution by means of Sr-isotope ratios : 3 case studies on the Caribbean plate : (Cretaceous: Nicoya Peninsula, Costa Rica, Tertiary: Hess Rise, and La Désirade, Guadeloupe, France)

Détails

Ressource 1Télécharger: BIB_3F893F8E6EA7.P001.pdf (6977.37 [Ko])
Etat: Serval
Version: Après imprimatur
ID Serval
serval:BIB_3F893F8E6EA7
Type
Thèse: thèse de doctorat.
Collection
Publications
Titre
Assessing sedimentary evolution by means of Sr-isotope ratios : 3 case studies on the Caribbean plate : (Cretaceous: Nicoya Peninsula, Costa Rica, Tertiary: Hess Rise, and La Désirade, Guadeloupe, France)
Auteur(s)
Weber P.
Directeur(s)
Baumgartner  P.
Institution
Université de Lausanne, Faculté des géosciences et de l'environnement
Adresse
Faculté des géosciences et de l'environnement Université de Lausanne Géopolis CH-1015 Lausanne SUISSE
Statut éditorial
Acceptée
Date de publication
2013
Langue
anglais
Nombre de pages
176
Résumé
The understanding of sedimentary evolution is intimately related to the knowledge of the exact ages of the sediments. When working on carbonate sediments, age dating is commonly based on paleontological observations and established biozonations, which may prove to be relatively imprecise. Dating by means of strontium isotope ratios in marine bioclasts is the probably best method in order to precisely date carbonate successions, provided that the sample reflects original marine geochemical characteristics. This requires a precise study of the samples including its petrography, SEM and cathodoluminescence observations, stable carbon and oxygen isotope geochemistry and finally the strontium isotope measurement itself.
On the Nicoya Peninsula (Northwestern Costa Rica) sediments from the Piedras Blancas Formation, Nambi Formation and Quebrada Pavas Formation were dated by the means of strontium isotope ratios measured in Upper Cretaceous Inoceramus shell fragments. Results have shown average 87Sr/86Sr values of 0.707654 (middle late Campanian) for the Piedras Blancas Formation, 0.707322 (Turonian-Coniacian) for the Nambi Formation and 0.707721 (late Campanian-Maastrichtian) for the Quebrada Pavas Formation. Abundant detrital components in the studied formations constitute a difficulty to strontium isotope dating. In fact, the fossil bearing sediments can easily contaminate the target fossil with strontium mobilized form basalts during diagenesis and thus the obtained strontium isotope ratios may be influenced significantly and so will the obtained ages. The new and more precise age assignments allow for more precision in the chronostratigraphic chart of the sedimentary and tectonic evolution of the Nicoya Peninsula, providing a better insight on the evolution of this region.
Meteor Cruise M81 dredged shallow water carbonates from the Hess Rise and Hess Escarpment during March 2010. Several of these shallow water carbonates contain abundant Larger Foraminifera that indicates an Eocene-Oligocene age. In this study the strontium isotope values ranging from 0.707847 to 0.708238 can be interpreted as a Rupelian to Chattian age of these sediments. These platform sediments are placed on seamounts, now located at depths reaching 1600 m. Observation of sedimentologic characteristics of these sediments has helped to resolve apparent discrepancies between fossil and strontium isotope ages. Hence, it is possible to show that the subsidence was active during early Miocene times.
On La Désirade (Guadeloupe France), the Neogene to Quaternary carbonate cover has been dated by microfossils and some U/Th-ages. Disagreements subsisted in the paleontological ages of the formations. Strontium isotope ratios ranging from 0.709047 to 0.709076 showed the Limestone Table of La Désirade to range from an Early Pliocene to Late Pliocene/early Pleistocene age. A very late Miocene age (87Sr/86Sr =0.709013) can be determined to the Detrital Offshore Limestone. The flat volcanic basement had to be eroded by wave-action during a long-term stable relative sea-level. Sediments of the Table Limestone on La Désirade show both low-stand and high-stand facies that encroach on the igneous basement, implying deposition during a major phase of subsidence creating accommodation space. Subsidence is followed by tectonic uplift documented by fringing reefs and beach rocks that young from the top of the Table Limestone (180 m) towards the present coastline. Strontium isotope ratios from two different fringing reefs (0.707172 and 0.709145) and from a beach rock (0.709163) allow tentative dating, (125ky, ~ 400ky, 945ky) and indicate an uplift rate of about 5cm/ky for this time period of La Désirade Island. The documented subsidence and uplift history calls for a new model of tectonic evolution of the area.
Création de la notice
03/02/2014 13:36
Dernière modification de la notice
20/05/2019 11:51
Données d'usage