Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber but does not improve protection of the plant against Pythium root rot
Details
Serval ID
serval:BIB_3DA73C79F4D8
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber but does not improve protection of the plant against Pythium root rot
Journal
FEMS Microbiology Ecology
ISSN
0168-6496
Publication state
Published
Issued date
1998
Peer-reviewed
Oui
Volume
28
Number
3
Pages
225-233
Language
english
Notes
licence nationale
Abstract
The biocontrol strain CHA0 of Pseudomonas fluorescens produces small amounts of indole-3-acetic acid via the tryptophan side chain oxidase and the tryptophan transaminase pathways. A recombinant plasmid (pME3468) expressing the tryptophan monooxygenase pathway was introduced into strain CHA0; this resulted in elevated synthesis of indole-3-acetic acid in vitro, especially after addition of -tryptophan. In natural soil, strain CHA0/pME3468 increased fresh root weight of cucumber by 17-36%, compared to the effect of strain CHA0; root colonization was about 106 cells per g of root. However, both strains gave similar protection of cucumber against Pythium ultimum. In autoclaved soil, at 6×107 cells per g of root, strain CHA0 stimulated growth of roots and shoots, whereas strain CHA0/pME3468 caused root stunting and strong reduction of plant weight. These results are in agreement with the known effects of exogenous indole-3-acetic acid on plant roots and suggest that in the system examined, indole-3-acetic acid does not contribute to the biocontrol properties of strain CHA0.
Web of science
Open Access
Yes
Create date
17/02/2008 12:12
Last modification date
20/08/2019 13:34