Anatomy-Informed Multimodal Learning for Myocardial Infarction Prediction.
Details
Serval ID
serval:BIB_3CD05767B091
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Anatomy-Informed Multimodal Learning for Myocardial Infarction Prediction.
Journal
IEEE open journal of engineering in medicine and biology
ISSN
2644-1276 (Electronic)
ISSN-L
2644-1276
Publication state
Published
Issued date
2024
Peer-reviewed
Oui
Volume
5
Pages
837-845
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
Goal: In patients with coronary artery disease, the prediction of future cardiac events such as myocardial infarction (MI) remains a major challenge. In this work, we propose a novel anatomy-informed multimodal deep learning framework to predict future MI from clinical data and Invasive Coronary Angiography (ICA) images. Methods: The images are analyzed by Convolutional Neural Networks (CNNs) guided by anatomical information, and the clinical data by an Artificial Neural Network (ANN). Embeddings from both sources are then merged to provide a patient-level prediction. Results: The results of our framework on a clinical study of 445 patients admitted with acute coronary syndromes confirms that multimodal learning increases the predictive power and achieves good performance (AUC: [Formula: see text] & F1-Score: [Formula: see text]), which outperforms the prediction obtained by each modality independently as well as that of interventional cardiologists (AUC: 0.54 & F1-Score: 0.18). Conclusions: To the best of our knowledge, this is the first attempt towards combining multimodal data through a deep learning framework for future MI prediction. Although it demonstrates the superiority of multi-modal approaches over single modality, the results do not yet meet the necessary criteria for practical application.
Keywords
Coronary artery disease, deep learning, invasive coronary angiography, multimodal data, myocardial infarction
Pubmed
Web of science
Open Access
Yes
Create date
22/11/2024 14:21
Last modification date
22/11/2024 17:56