Modeling stochasticity and robustness in gene regulatory networks.

Details

Ressource 1Download: BIB_3C1AE80B8836.P001.pdf (973.89 [Ko])
State: Public
Version: author
Serval ID
serval:BIB_3C1AE80B8836
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Modeling stochasticity and robustness in gene regulatory networks.
Journal
Bioinformatics
Author(s)
Garg A., Mohanram K., Di Cara A., De Micheli G., Xenarios I.
ISSN
1367-4811 (Electronic)
ISSN-L
1367-4803
Publication state
Published
Issued date
2009
Volume
25
Number
12
Pages
i101-i109
Language
english
Abstract
MOTIVATION: Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations.
RESULTS: In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs.
AVAILABILITY: Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.
Keywords
Algorithms, Computational Biology/methods, Gene Expression Profiling/methods, Gene Regulatory Networks
Pubmed
Web of science
Open Access
Yes
Create date
17/10/2012 12:03
Last modification date
20/08/2019 13:32
Usage data