Animal model for endoscopic neurosurgical training: technical note.
Details
Serval ID
serval:BIB_3A687C59F0AB
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Animal model for endoscopic neurosurgical training: technical note.
Journal
Minimally invasive neurosurgery
ISSN
1439-2291 (Electronic)
ISSN-L
0946-7211
Publication state
Published
Issued date
10/2010
Peer-reviewed
Oui
Volume
53
Number
5-6
Pages
286-289
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
The learning curve for endonasal endoscopic and neuroendoscopic port surgery is long and often associated with an increase in complication rates as surgeons gain experience. We present an animal model for laboratory training aiming to encourage the young generation of neurosurgeons to pursue proficiency in endoscopic neurosurgical techniques.
20 Wistar rats were used as models. The animals were introduced into a physical trainer with multiple ports to carry out fully endoscopic microsurgical procedures. The vertical and horizontal dimensions of the paired ports (simulated nostrils) were: 35×20 mm, 35×15 mm, 25×15 mm, and 25×10 mm. 2 additional single 11.5 mm endoscopic ports were added. Surgical depth varied as desired between 8 and 15 cm. The cervical and abdominal regions were the focus of the endoscopic microsurgical exercises.
The different endoscopic neurosurgical techniques were effectively trained at the millimetric dimension. Levels of progressive surgical difficulty depending upon the endoneurosurgical skills set needed for a particular surgical exercise were distinguished. LEVEL 1 is soft-tissue microdissection (exposure of cervical muscular plane and retroperitoneal space); LEVEL 2 is soft-tissue-vascular and vascular-capsule microdissection (aorto-cava exposure, carotid sheath opening, external jugular vein isolation); LEVEL 3 is artery-nerve microdissection (carotid-vagal separation); LEVEL 4 is artery-vein microdissection (aorto-cava separation); LEVEL 5 is vascular repair and microsuturing (aortic rupture), which verified the lack of current proper instrumentation.
The animal training model presented here has the potential to shorten the length of the learning curve in endonasal endoscopic and neuroendoscopic port surgery and reduce the incidence of training-related surgical complications.
20 Wistar rats were used as models. The animals were introduced into a physical trainer with multiple ports to carry out fully endoscopic microsurgical procedures. The vertical and horizontal dimensions of the paired ports (simulated nostrils) were: 35×20 mm, 35×15 mm, 25×15 mm, and 25×10 mm. 2 additional single 11.5 mm endoscopic ports were added. Surgical depth varied as desired between 8 and 15 cm. The cervical and abdominal regions were the focus of the endoscopic microsurgical exercises.
The different endoscopic neurosurgical techniques were effectively trained at the millimetric dimension. Levels of progressive surgical difficulty depending upon the endoneurosurgical skills set needed for a particular surgical exercise were distinguished. LEVEL 1 is soft-tissue microdissection (exposure of cervical muscular plane and retroperitoneal space); LEVEL 2 is soft-tissue-vascular and vascular-capsule microdissection (aorto-cava exposure, carotid sheath opening, external jugular vein isolation); LEVEL 3 is artery-nerve microdissection (carotid-vagal separation); LEVEL 4 is artery-vein microdissection (aorto-cava separation); LEVEL 5 is vascular repair and microsuturing (aortic rupture), which verified the lack of current proper instrumentation.
The animal training model presented here has the potential to shorten the length of the learning curve in endonasal endoscopic and neuroendoscopic port surgery and reduce the incidence of training-related surgical complications.
Keywords
Animals, Models, Animal, Neuroendoscopy/education, Neuroendoscopy/methods, Rats, Rats, Wistar
Pubmed
Web of science
Create date
13/09/2019 12:17
Last modification date
03/08/2023 15:29