Mise en oeuvre de protocoles spatiaux pour analyser la modulation de processus cognitifs en fonction de la dimension émotionnelle chez le rongeur

Details

Request a copy
Serval ID
serval:BIB_37A8919A037E
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Mise en oeuvre de protocoles spatiaux pour analyser la modulation de processus cognitifs en fonction de la dimension émotionnelle chez le rongeur
Author(s)
Chalard R.
Director(s)
Schenk F.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Faculté de biologie et de médecine Université de Lausanne UNIL - Bugnon Rue du Bugnon 21 - bureau 4111 CH-1015 Lausanne SUISSE
Publication state
Accepted
Issued date
2009
Language
french
Number of pages
248
Notes
REROID:R005449242 ill.
Abstract
Résumé :
Emotion et cognition sont deux termes généralement employés pour désigner des processus psychiques de nature opposée. C'est ainsi que les sciences cognitives se sont longtemps efforcées d'écarter la composante «chaude »des processus «froids »qu'elles visaient, si ce n'est pour montrer l'effet dévastateur de la première sur les seconds. Pourtant, les processus cognitifs (de collecte, maintien et utilisation d'information) et émotioAnels (d'activation subjective, physiologique et comportementale face à ce qui est attractif ou aversif) sont indissociables.
Par l'approche neuro-éthologique, à l'interface entre le substrat biologique et les manifestations comportementales, nous nous sommes intéressés à une fonction cognitive essentielle, la fonction mnésique, classiquement exprimée chez le rongeur par l'orientation spatiale. Au niveau du substrat, McDonald et White (1993) ont montré la dissociation de trois systèmes de mémoire, avec les rôles de l'hippocampe, du néostriatum et de l'amygdale dans l'encodage des informations respectivement épisodiques, procédurales et émotionnelles. Nous nous sommes penchés sur l'interaction entre ces systèmes en fonction de la dimension émotionnelle par l'éclairage du comportement.
L'état émotionnel de l'animal dépend de plusieurs facteurs, que nous avons tenté de contrôler indirectement en comparant leurs effets sur l'acquisition, dans diverses conditions, de la tâche de Morris (qui nécessite la localisation dans un bassin de la position d'une plate-forme submergée), ainsi que sur le style d'exploration de diverses arènes, ouvertes ou fermées, plus ou moins structurées par la présence de tunnels en plexiglas transparent.
Nous avons d'abord exploré le rôle d'un composant du système adrénergique dans le rapport à la difficulté et au stress, à l'aide de souris knock-out pour le récepteur à la noradrénaline a-1 B dans un protocole avec 1 ou 4 points de départ dans un bassin partitionné. Ensuite, nous nous sommes penchés, chez le rat, sur les effets de renforcement intermittent dans différentes conditions expérimentales. Dans ces conditions, nous avons également tenté d'analyser en quoi la situation du but dans un paysage donné pouvait interférer avec les effets de certaines formes de stress. Finalement, nous avons interrogé les conséquences de perturbations passées, y compris le renforcement partiel, sur l'organisation des déplacements sur sol sec.
Nos résultats montrent la nécessité, pour les souris cont~ô/es dont l'orientation repose sur l'hippocampe, de pouvoir varier les trajectoires, ce qui favoriserait la constitution d'une carte cognitive. Les souris a->B KO s'avèrent plus sensibles au stress et capables de bénéficier de la condition de route qui permet des réponses simples et automatisées, sous-tendues par l'activité du striatum.
Chez les rats en bassin 100% renforcé, l'orientation apparaît basée sur l'hippocampe, relayée par le striatum pour le développement d'approches systématiques et rapides, avec réorientation efficace en nouvelle position par réactivation dépendant de l'hippocampe. A 50% de renforcement, on observe un effet du type de déroulement des sessions, transitoirement atténué par la motivation Lorsque les essais s'enchaînent sans pause intrasession, les latences diminuent régulièrement, ce qui suggère une prise en charge possible par des routines S-R dépendant du striatum.
L'organisation des mouvements exploratoires apparaît dépendante du niveau d'insécurité, avec différents profils intermédiaires entre la différentiation maximale et la thigmotaxie, qui peuvent être mis en relation avec différents niveaux d'efficacité de l'hippocampe.
Ainsi, notre travail encourage à la prise en compte de la dimension émotionnelle comme modulatrice du traitement d'information, tant en phase d'exploration de l'environnement que d'exploitation des connaissances spatiales.
Abstract :
Emotion and cognition are terms widely used to refer to opposite mental processes. Hence, cognitive science research has for a long time pushed "hot" components away from "cool" targeted processes, except for assessing devastating effects of the former upon the latter. However, cognitive processes (of information collection, preservation, and utilization) and emotional processes (of subjective, physiological, and behavioral activation roue to attraction or aversion) are inseparable.
At the crossing between biological substrate and behavioral expression, we studied a chief cognitive function, memory, classically shown in animals through spatial orientation. At the substrate level, McDonald et White (1993) have shown a dissociation between three memory systems, with the hippocampus, neostriatum, and amygdala, encoding respectively episodic, habit, and emotional information. Through the behavior of laboratory rodents, we targeted the interaction between those systems and the emotional axis.
The emotional state of an animal depends on different factors, that we tried to check in a roundabout way by the comparison of their effects on acquisition, in a variety of conditions, of the Morris task (in which the location of a hidden platform in a pool is required), as well as on the exploration profile in different apparatus, open-field and closed mazes, more or less organized by clear Plexiglas tunnels.
We first tracked the role, under more or less difficult and stressful conditions, of an adrenergic component, with knock-out mice for the a-1 B receptor in a partitioned water maze with 1 or 4 start positions. With rats, we looked for the consequences of partial reinforcement in the water maze in different experimental conditions. In those conditions, we further analyzed how the situation of the goal in the landscape could interfere with the effect of a given stress. At last, we conducted experiments on solid ground, in an open-field and in radial mazes, in order to analyze the organization of spatial behavior following an aversive life event, such as partial reinforcement training in the water maze.
Our results emphasize the reliance of normal mice to be able to vary approach trajectories. One of our leading hypotheses is that such strategies are hippocampus-dependent and are best developed for of a "cognitive map like" representation. Alpha-1 B KO mice appear more sensitive to stress and able to take advantage of the route condition allowing simple and automated responses, most likely striatum based.
With rats in 100% reinforced water maze, the orientation strategy is predominantly hippocampus dependent (as illustrated by the impairment induced by lesions of this structure) and becomes progressively striatum dependent for the development of systematic and fast successful approaches. Training towards a new platform position requires a hippocampus based strategy. With a 50% reinforcement rate, we found a clear impairment related to intersession disruption, an effect transitorily minimized by motivation enhancement (cold water). When trials are given without intrasession interruption, latencies consistently diminish, suggesting a possibility for striatum dependent stimulus-response routine to occur.
The organization of exploratory movements is shown to depend on the level of subjective security, with different intermediary profiles between maximum differentiation and thigmotaxy, which can be considered in parallel with different efficiency levels of the hippocampus dependent strategies.
Thus, our work fosters the consideration of emotion as a cognitive treatment modulator, during spatial exploration as well as spatial learning. It leads to a model in which the predominance of hippocampus based exploration is challenged by training conditions of various nature.
Create date
14/06/2010 15:11
Last modification date
20/08/2019 14:26
Usage data