Assessing the inhaled dose of nanomaterials by nanoparticle tracking analysis (NTA) of exhaled breath condensate (EBC) and its relationship with lung inflammatory biomarkers.

Details

Serval ID
serval:BIB_37948ED8E85D
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Assessing the inhaled dose of nanomaterials by nanoparticle tracking analysis (NTA) of exhaled breath condensate (EBC) and its relationship with lung inflammatory biomarkers.
Journal
Chemosphere
Author(s)
Panizzolo M., Barbero F., Ghelli F., Garzaro G., Bellisario V., Guseva Canu I., Fenoglio I., Bergamaschi E., Bono R.
ISSN
1879-1298 (Electronic)
ISSN-L
0045-6535
Publication state
Published
Issued date
28/04/2024
Peer-reviewed
Oui
Volume
358
Pages
142139
Language
english
Abstract
The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1β, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.
Keywords
Effect biomarkers, Exhaled breath condensate, Exposure biomarker, nanomaterials (NMs), Nanoparticle tracking analysis (NTA), Occupational exposure
Pubmed
Open Access
Yes
Create date
03/05/2024 14:45
Last modification date
04/05/2024 7:07
Usage data