Population pharmacokinetics of imatinib in CML and GIST patients under long-term treatment


ID Serval
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Abstract (résumé de présentation): article court qui reprend les éléments essentiels présentés à l'occasion d'une conférence scientifique dans un poster ou lors d'une intervention orale.
Population pharmacokinetics of imatinib in CML and GIST patients under long-term treatment
Titre de la conférence
7th Congress of the European Association for Clinical Pharmacology and Therapeutics (EACPT)
Widmer N., Decosterd L.A., Leyvraz S., Duchosal M.A., Csajka C., Biollaz J., Buclin T.
Poznan, Poland, June 25-29, 2005
Statut éditorial
Date de publication
Basic and Clinical Pharmacology and Toxicology
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). However, the treatment must be taken indefinitely and is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene), and is also bound to the alpha1-acid glycoprotein (AAG) in plasma. Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations were measured in 59 patients receiving Glivec® at diverse dosage regimens, using a validated chromatographic method developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one-compartment model with first-order absorption described the data appropriately, with an average apparent clearance of 12.4 l/h, a volume of distribution of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T and the AAG phenotype appears to modulate the disposition of imatinib. Large inter-individual variability (CV %) remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help in individualising the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Création de la notice
01/12/2010 9:57
Dernière modification de la notice
20/08/2019 13:22
Données d'usage