The tidyomics ecosystem: Enhancing omic data analyses.

Details

Serval ID
serval:BIB_2E7F8476CE75
Type
Autre: use this type when nothing else fits.
Collection
Publications
Institution
Title
The tidyomics ecosystem: Enhancing omic data analyses.
Author(s)
Hutchison William J., Keyes Timothy J., Crowell Helena L., Serizay Jacques, Soneson Charlotte, Davis Eric S., Sato Noriaki, Moses Lambda, Tarlinton Boyd, Nahid Abdullah A., Kosmac Miha, Clayssen Quentin, Yuan Victor, Mu Wancen, Park Ji-Eun, Mamede Izabela, Ryu Min Hyung, Axisa Pierre-Paul, Paiz Paulina, Poon Chi-Lam, Tang Ming, Gottardo Raphael, Morgan Martin, Lee Stuart, Lawrence Michael, Hicks Stephanie C., Nolan Garry P., Davis Kara L., Papenfuss Anthony T., Love Michael I., Mangiola Stefano
Language
english
Abstract
The growth of omic data presents evolving challenges in data manipulation, analysis, and integration. Addressing these challenges, Bioconductor <sup>1</sup> provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming <sup>2</sup> offers a revolutionary standard for data organisation and manipulation. Here, we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning, and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analysing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas <sup>3</sup> , spanning six data frameworks and ten analysis tools.
Pubmed
Create date
13/06/2024 15:05
Last modification date
14/06/2024 6:03
Usage data