Auxin transport inhibitors block PIN1 cycling and vesicle trafficking.
Details
Serval ID
serval:BIB_22BB10B983E1
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Auxin transport inhibitors block PIN1 cycling and vesicle trafficking.
Journal
Nature
ISSN
0028-0836 (Print)
ISSN-L
0028-0836
Publication state
Published
Issued date
2001
Volume
413
Number
6854
Pages
425-428
Language
english
Abstract
Polar transport of the phytohormone auxin mediates various processes in plant growth and development, such as apical dominance, tropisms, vascular patterning and axis formation. This view is based largely on the effects of polar auxin transport inhibitors. These compounds disrupt auxin efflux from the cell but their mode of action is unknown. It is thought that polar auxin flux is caused by the asymmetric distribution of efflux carriers acting at the plasma membrane. The polar localization of efflux carrier candidate PIN1 supports this model. Here we show that the seemingly static localization of PIN1 results from rapid actin-dependent cycling between the plasma membrane and endosomal compartments. Auxin transport inhibitors block PIN1 cycling and inhibit trafficking of membrane proteins that are unrelated to auxin transport. Our data suggest that PIN1 cycling is of central importance for auxin transport and that auxin transport inhibitors affect efflux by generally interfering with membrane-trafficking processes. In support of our conclusion, the vesicle-trafficking inhibitor brefeldin A mimics physiological effects of auxin transport inhibitors.
Keywords
Arabidopsis, Arabidopsis Proteins, Biological Transport, Brefeldin A/pharmacology, Cell Membrane/metabolism, Cytoskeleton/metabolism, Endosomes/metabolism, Indoleacetic Acids/antagonists &, inhibitors, Indoleacetic Acids/metabolism, Membrane Proteins/metabolism, Membrane Transport Proteins, Proton-Translocating ATPases/metabolism, Triiodobenzoic Acids/pharmacology
Pubmed
Web of science
Create date
09/03/2008 18:19
Last modification date
20/08/2019 13:00