Frequency matters: comparison of drug resistance mutation detection by Sanger and next-generation sequencing in HIV-1.
Details
Serval ID
serval:BIB_213147216CE3
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Frequency matters: comparison of drug resistance mutation detection by Sanger and next-generation sequencing in HIV-1.
Journal
The Journal of antimicrobial chemotherapy
ISSN
1460-2091 (Electronic)
ISSN-L
0305-7453
Publication state
Published
Issued date
02/03/2023
Peer-reviewed
Oui
Volume
78
Number
3
Pages
656-664
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
Next-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds.
To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds.
We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%.
We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.
To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds.
We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%.
We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.
Keywords
Male, Humans, HIV-1, HIV Infections/drug therapy, Cohort Studies, Drug Resistance, Viral/genetics, Viral Load, HIV Seropositivity/drug therapy, Mutation, High-Throughput Nucleotide Sequencing/methods, Genotype, Anti-HIV Agents/therapeutic use
Pubmed
Web of science
Create date
03/03/2023 13:54
Last modification date
16/11/2023 7:11