MicroRNA-223 controls the expression of histone deacetylase 2: a novel axis in COPD.

Details

Serval ID
serval:BIB_170C5532A19B
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
MicroRNA-223 controls the expression of histone deacetylase 2: a novel axis in COPD.
Journal
Journal of molecular medicine
Author(s)
Leuenberger C., Schuoler C., Bye H., Mignan C., Rechsteiner T., Hillinger S., Opitz I., Marsland B., Faiz A., Hiemstra P.S., Timens W., Camici G.G., Kohler M., Huber L.C., Brock M.
ISSN
1432-1440 (Electronic)
ISSN-L
0946-2716
Publication state
Published
Issued date
06/2016
Peer-reviewed
Oui
Volume
94
Number
6
Pages
725-734
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
Reduced activity of histone deacetylase 2 (HDAC2) has been described in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms resulting in decreased expression of this important epigenetic modifier remain unknown. Here, we employed several in vitro experiments to address the role of microRNAs (miRNAs) on the regulation of HDAC2 in endothelial cells. Manipulation of miRNA levels in human pulmonary artery endothelial cells (HPAEC) was achieved by using electroporation with anti-miRNAs and miRNA mimics. Target prediction software identified miR-223 as a potential repressor of HDAC2. In subsequent stimulation experiments using inflammatory cytokines known to be increased in patients with COPD, miR-223 was found to be significantly induced. Functional analysis demonstrated that overexpression of miR-223 decreased HDAC2 expression and activity in HPAEC. Conversely, HDAC2 expression and activity was preserved in anti-miR-223-treated cells. Direct miRNA-target interaction was confirmed by reporter gene assay. In a next step, reduced expression of HDAC2 was found to increase the levels of the chemokine fractalkine (CX3CL1). In vivo studies confirmed elevated expression levels of miR-223 in mice exposed to cigarette smoke and in emphysematous lung tissue from LPS-treated mice. Moreover, a significant inverse correlation of miR-223 and HDAC2 expression was found in two independent cohorts of COPD patients. These data emphasize that miR-223, the most prevalent miRNA in COPD, controls expression and activity of HDAC2 in pulmonary cells, which, in turn, might alter the expression profile of chemokines. This pathway provides a novel pathogenic link between dysregulated miRNA expression and epigenetic activity in COPD.
Histone deacetylase 2 is directly targeted by miR-223. Levels of miR-223 are induced by interleukin-1β and tumor necrosis factor-α. miR-223 controls the expression of fractalkine by targeting histone deacetylase 2. miR-223 levels are increased in COPD mouse models. miR-223 levels inversely correlate with HDAC2 expression in COPD patients.

Keywords
Animals, Base Sequence, Cell Line, Chemokine CX3CL1/genetics, Chemokine CX3CL1/metabolism, Complex Mixtures/toxicity, Disease Models, Animal, Endothelial Cells/cytology, Endothelial Cells/drug effects, Endothelial Cells/metabolism, Epigenesis, Genetic, Histone Deacetylase 2/genetics, Histone Deacetylase 2/metabolism, Humans, Interleukin-1/pharmacology, Lipopolysaccharides/pharmacology, Mice, MicroRNAs/antagonists & inhibitors, MicroRNAs/genetics, MicroRNAs/metabolism, Oligoribonucleotides, Antisense/genetics, Oligoribonucleotides, Antisense/metabolism, Pulmonary Artery/cytology, Pulmonary Artery/drug effects, Pulmonary Artery/metabolism, Pulmonary Disease, Chronic Obstructive/genetics, Pulmonary Disease, Chronic Obstructive/metabolism, Pulmonary Disease, Chronic Obstructive/pathology, Pulmonary Emphysema/chemically induced, Pulmonary Emphysema/genetics, Pulmonary Emphysema/metabolism, Pulmonary Emphysema/pathology, Signal Transduction, Smoke/adverse effects, Tobacco/chemistry, Tobacco/toxicity, Tumor Necrosis Factor-alpha/pharmacology, Chronic obstructive pulmonary disease, Histone deacetylase 2, Inflammation, microRNA
Pubmed
Web of science
Create date
20/02/2016 18:15
Last modification date
20/08/2019 13:46
Usage data