The binding ability of iron bonded to porphodimethene: structural, magnetic, and electronic relationship to iron porphyrin complexes.

Details

Serval ID
serval:BIB_16800
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
The binding ability of iron bonded to porphodimethene: structural, magnetic, and electronic relationship to iron porphyrin complexes.
Journal
Chemistry (weinheim An Der Bergstrasse, Germany)
Author(s)
Da Silva C., Bonomo L., Solari E., Scopelliti R., Floriani C., Re N.
ISSN
0947-6539 (Print)
ISSN-L
0947-6539
Publication state
Published
Issued date
2000
Volume
6
Number
24
Pages
4518-4531
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
The availability of the parent compound, meso-hexaethylporphodimetheneiron(II), [(Et6N4)Fe] (2), of this report results from a novel synthetic methodology that makes [Et6N4Li2] (1) easily available. The major focus is on how the axial positions, which are the key reactive sites in metalloporphyrins, and the electronic configuration of the metal can be affected by the breakdown of the aromaticity of the porphyrin skeleton and by the nonplanar conformation of the ligand. DFT calculations indicate a 3B1(dz2)1(dyz)1 ground state for 2 versus the 3A2(dxz)1(dyz)1 ground state in the porphyrin analogue. The intermediate-spin state (S = 1) of 2 changed drastically upon addition of one or two axial ligands, as hexacoordination is preferred by iron(II). The hexacoordinate complexes [(Et6N4)Fe(L)(L')] (L = L' = THF, 3; L = L' = Py, 4; L = PhNO, L' = Py, 14) have been isolated and structurally characterized. Strong-field ligands lead to a low-spin diamagnetic state for iron(II), namely for complexes 4-7, 9, and 14, whereas 3 is a typical d6 high-spin complex, as is the pentacoordinate [(Et6N4)Fe(CN)]Bu4N (8). The structural analysis showed common features for 6, 7, 9, and 14: i) a small displacement of the metal from the N4 plane, and ii) an N4 cavity, larger than that in the corresponding porphyrins, affecting the Fe-N bond lengths. The 1H NMR spectrum is quite diagnostic of the two-fold symmetry in the diamagnetic hexacoordinate complexes, revealing either a D2h or a C2v symmetry. The CO stretching frequency (1951 cm(-1)) in complex 6 probes the good electron density at the metal. The one-electron oxidation of 2 led to pentacoordinate iron(III) derivatives [(Et6N4)Fe(Cl)] (10), [(Et6N4)2Fe2(mu-O)] (11), and [(Et6N4)2Fe2(mu-p-OC6H4-O)] (12). Complex 10 is a typical high-spin iron(III) (5.85muB at 298 K), while 11 and 12 behave as antiferromagnetic coupled iron(III) (J = -9.4cm(-1), 12, and J = -115cm(-1), 11). In complexes 10, 11, and 12 iron is sitting in a quite distorted square pyramidal geometry, in which the ligand displays a very distorted roof conformation with different degrees of ruffling. Distinctive structural and magnetic features have been found for the nitrosyl derivative [(Et6N4)Fe-NO], which has a low-spin state (S = 1/2) and the following structural parameters: Fe-N-O, 147.3(2) degrees; Fe-N, 1.708(2) A; N-O, 1.172(3) A. A comparative structural, magnetic, and theoretical analysis of the compounds listed above has been made with the analogous porphyrin derivatives. The detailed structural investigation has been mapped through the X-ray analysis of 2, 7, 8, 9, 11, 13, and 14.
Pubmed
Create date
19/11/2007 10:38
Last modification date
20/08/2019 13:46
Usage data