Environmental control of the Pom1-dependent cell-size regulation pathway in fission yeast

Détails

Ressource 1Télécharger: BIB_16067FDFD922.P001.pdf (41300.33 [Ko])
Etat: Serval
Version: Après imprimatur
ID Serval
serval:BIB_16067FDFD922
Type
Thèse: thèse de doctorat.
Collection
Publications
Titre
Environmental control of the Pom1-dependent cell-size regulation pathway in fission yeast
Auteur(s)
KELKAR M.
Directeur(s)
MARTIN S.
Institution
Université de Lausanne, Faculté de biologie et médecine
Adresse
Rue de la Borde,1, 1018 Lausanne
Statut éditorial
Acceptée
Date de publication
10/2015
Langue
anglais
Résumé
Cells couple their growth and division rate in response to nutrient availability to maintain a constant size. This co-ordination happens either at the G1-S or the G2-M transition of the cell cycle. In the rod-shaped fission yeast, size regulation happens at the G2-M transition prior to mitotic commitment. Recent studies have focused on the role of the DYRK-family protein kinase Pom1, which forms gradients emanating from cell poles and inhibits the mitotic activator kinase Cdr2, present at the cell middle. Pom1 was proposed to inhibit Cdr2 until cells reached a critical size before division. However when and where Pom1 inhibits Cdr2 is not clear as medial Pom1 levels do not change during cell elongation. Here I show that Pom1 gradients are susceptible to environmental changes in glucose. Specifically, upon glucose limitation, Pom1 re-localizes from the poles to the cell sides where it delays mitosis through regulating Cdr2. This re-localization occurs due to microtubule de- stabilization and lateral catastrophes leading to transient deposition of the Pom1 gradient nucleator Tea4 along the cell cortex. As Tea4 localization to cell sides is sufficient to recruit Pom1, this explains the mechanism of Pom1 re-localization. Microtubule destabilization and consequently Tea4 and Pom1 spread depends on the activity of the cAMP-dependent Protein Kinase A (PKA/Pka1), as pka1 mutant cells have stable microtubules and retain polar Tea4 and Pom1 under limited glucose. PKA signaling negatively regulates the microtubule rescue factor CLASP/Cls1, thus reducing its ability to stabilize microtubules. Thus PKA signaling tunes CLASP activity to promote microtubule de-stabilization and Pom1 re-localization upon glucose limitation. I show that the side-localized Pom1 delays mitosis and balances the role of the mitosis promoting, mitogen-associated protein kinase (MAPK) protein Sty1. Thus Pom1 re-localization may serve to buffer cell size upon glucose limitation.
--
Afin de maintenir une taille constante, les cellules régulent leur croissance ainsi que leur taux de division selon les nutriments disponibles dans le milieu. Dans la levure fissipare, cette régulation de la taille précède l'engagement mitotique et se fait à la transition entre les phases G2 à M du cycle cellulaire. Des études récentes se sont focalisées sur le rôle de la protéine Pom1, membre de la famille des DYRK kinase. Celle-ci forme un gradient provenant des pôles de la cellule et inhibe l'activateur mitotique Cdr2 présent au centre de la cellule. Le model propose que Pom1 inhibe Cdr2 jusqu'à atteindre une taille critique avant la division. Cependant quand et à quel endroit dans la cellulle Pom1 inhibe Cdr2 n'était pas clair car les niveaux médians de Pom1 ne changent pas au cours de la l'élongation des cellules. Dans cette étude, je montre que les gradients de Pom1 sont sensibles aux changements environnementaux du taux de glucose. Plus spécifiquement, en conditions limitantes de glucose, Pom1 se relocalise des pôles de la cellule pour se distribuer sur les côtés de celle-ci. Par conséquent, un délai d'entrée en mitose est observé dû à l'inhibition Cdr2 par Pom1. Cette délocalisation est due à la déstabilisation des microtubules qui va conduire à une déposition transitoire de Tea4, le nucléateur du gradient de Pom1, tout au long du cortex de la cellule. Comme la localisation de Tea4 sur les côtés de la cellule est suffisante pour recruter la protéine Pom1, ceci explique le mécanisme de relocalisation de celle-ci. La déstabilisation des microtubules et par conséquent la diffusion de Tea4 et Pom1 dépendent de l'activité de la protéine kinase A dépendante de l'AMP cyclique (PKA/Pka1). En absence de pka1, la stabilité des microtubules n'est pas affectée ce qui permet la rétention de Tea4 et Pom1 aux pôles de la cellule même en conditions limitantes de glucose. La signalisation via PKA régule négativement le facteur de sauvetage des microtubules CLASP/Cls1 et permet donc de réduire sa fonction de déstabilisation des microtubules. Ainsi la signalisation via PKA affine l'activité des CLASP pour promouvoir la déstabilisation des microtubules et la relocalisation de Pom1 en conditions limitantes de glucose. Je montre que la localisation sur les côtés retarde l'entrée en mitose et compense l'action de la protéine Sty1, connue pour être une MAPK qui induit l'entrée en mitose. Ainsi, la relocalisation de Pom1 pourrait servir à tamponner la taille de la cellule en condition limitantes de glucose.
--
Various cell types in the environment such as bacterial, plant or animal cells have a distinct cellular size. Maintaining a constant cell size is important for fitness in unicellular organisms and for diverse functions in multicellular organisms. Cells regulate their size by coordinating their growth rate to their division rate. This coupling is important otherwise cells would get progressively smaller or larger after each successive cell cycle. In their natural environment cells may face fluctuations in the available nutrient supply. Thus cells have to coordinate their division rate to the variable growth rates shown under different nutrient conditions. During my PhD, I worked with a single-celled rod shaped yeast called the fission yeast. These cells are longer when the nutrient supply is abundant and shorter when the nutrient supply is scarce. A protein that senses changes in the external carbon source (glucose) is called Protein Kinase A (PKA). The rod shape of fission yeast cells is maintained thanks to a structural backbone called the cytoskeleton. One of the components of this backbone is called microtubules, which are small tube like structures spanning the length of the cell. They transport a protein called Tea4, which in turn is important for the proper localization of another protein Pom1 to the cell ends. Pom1 helps to maintain proper shape and size of these rod shaped yeast cells.
My thesis work showed that upon reduction in the external nutrient (glucose) levels, microtubules become less stable and show an alteration in their organization. A significant percentage of the microtubules contact the side of the cell instead of touching only the cell tip. This leads to the spreading of the protein Pom1 away from the tips all around the cell periphery. This helps fission yeast cells to maintain the proper size required under these conditions of limited glucose supply. I further showed that the protein PKA regulates microtubule stability and organization and thus Pom1 spreading and maintenance of proper cell size. Thus my work led to the discovery of a novel pathway by which fission yeast cells maintain their size under limited supply of glucose.
--
Divers types cellulaires dans l'environnement tels que les bactéries, les plantes ou les cellules animales ont une taille précise. Le maintien d'une taille cellulaire constante est importante pour le fitness des organismes unicellulaire ainsi que pour multiples fonctions dans les organismes multicellulaires. Les cellules régulent leur taille en coordonnant le taux de croissance avec le taux de division. Ce couplage est essentiel sinon les cellules deviendraient progressivement plus petites ou plus grandes après chaque cycle cellulaire. Dans leur habitat naturels les cellules peuvent faire face a des fluctuations dans le taux de nutriment disponible. Les cellules doivent donc coordonner leur taux de division aux taux variables de croissances perçus dans les différentes conditions nutritionnels.
Pendant ma thèse, j'ai travaillée sur une levure unicellulaire, en forme de bâtonnet, nommé levure fissipare ou levure de fission. La taille de ces cellules est plus grande quand le taux de nutriments est grand et plus courte quand celui-ci est plus faible. Une protéine qui perçoit les changements dans le taux externe de la source de carbone (glucose) est nommée PKA pour protéine kinase A. La forme en bâtonnet de la cellule est due aux caractères structuraux du cytosquelette. Une composante importante de ce cytosquelette sont les microtubules, dont la structures ressemble à des petit tubes qui vont d'un bout à l'autre de la cellule. Ces microtubules transportent une protéine importante nommée Tea4 qui à leur tour importante pour la bonne localisation d'une autre protéine Pom1 aux extrémités de la cellule. La protéine Pom1 aide à maintenir la taille appropriée des levures fissipares.
Mon travail de thèse a montré qu'en présence de taux faible de nutriments (glucose) les microtubules deviennent de moins en moins stables et montrent une désorganisation globale. Un pourcentage significatif des microtubules touche les côtés de la cellule aux lieu d'atteindre uniquement les extrémités. Ceci a pour conséquence une diffusion de Pom1 tout au long du cortex de la cellule. Ceci aide les levures fissipares à maintenir la taille appropriée pendant ce stress nutritionnel. De plus, je montre que PKA régule la stabilité et l'organisation des microtubules et par conséquent la diffusion de Pom1 et le maintien d'une taille constante. En conclusion, mon travail a conduit à la découverte d'un nouveau mécanisme par lequel la levure fissipare maintient sa taille dans des conditions limitantes en glucose.
Mots-clé
fission yeast, cell-size regulation, glucose limitation, Pom1, Cdr2, Tea4, microtubules, PKA, CLASP, MAPK, levure de fission, régulation de la taille, limitantes de glucose, Pom1, Cdr2, Tea4, microtubules, PKA, CLASP, MAPK
Création de la notice
09/11/2015 11:53
Dernière modification de la notice
03/03/2018 14:11
Données d'usage