Structure of the T4 baseplate and its function in triggering sheath contraction.

Details

Serval ID
serval:BIB_1523DF7DAFF5
Type
Article: article from journal or magazin.
Collection
Publications
Title
Structure of the T4 baseplate and its function in triggering sheath contraction.
Journal
Nature
Author(s)
Taylor N.M., Prokhorov N.S., Guerrero-Ferreira R.C., Shneider M.M., Browning C., Goldie K.N., Stahlberg H., Leiman P.G.
ISSN
1476-4687 (Electronic)
ISSN-L
0028-0836
Publication state
Published
Issued date
19/05/2016
Peer-reviewed
Oui
Volume
533
Number
7603
Pages
346-352
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Several systems, including contractile tail bacteriophages, the type VI secretion system and R-type pyocins, use a multiprotein tubular apparatus to attach to and penetrate host cell membranes. This macromolecular machine resembles a stretched, coiled spring (or sheath) wound around a rigid tube with a spike-shaped protein at its tip. A baseplate structure, which is arguably the most complex part of this assembly, relays the contraction signal to the sheath. Here we present the atomic structure of the approximately 6-megadalton bacteriophage T4 baseplate in its pre- and post-host attachment states and explain the events that lead to sheath contraction in atomic detail. We establish the identity and function of a minimal set of components that is conserved in all contractile injection systems and show that the triggering mechanism is universally conserved.
Keywords
Bacteriophage T4/chemistry, Bacteriophage T4/ultrastructure, Cryoelectron Microscopy, Crystallography, X-Ray, Models, Molecular, Protein Conformation, Viral Structural Proteins/chemistry, Viral Structural Proteins/ultrastructure
Pubmed
Web of science
Create date
09/06/2023 15:02
Last modification date
20/07/2023 5:57
Usage data