Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

Details

Ressource 1Download: 26236626_BIB_0EE6C652B26C.pdf (1779.85 [Ko])
State: Public
Version: Final published version
Serval ID
serval:BIB_0EE6C652B26C
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.
Journal
Neuroimage. Clinical
Author(s)
Lemkaddem A., Daducci A., Kunz N., Lazeyras F., Seeck M., Thiran J.P., Vulliémoz S.
ISSN
2213-1582 (Electronic)
ISSN-L
2213-1582
Publication state
Published
Issued date
2014
Peer-reviewed
Oui
Volume
5
Pages
349-358
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't Publication Status: epublish
Abstract
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
Keywords
Adolescent, Adult, Brain/pathology, Connectome/methods, Diffusion Tensor Imaging/methods, Epilepsy, Temporal Lobe/pathology, Female, Humans, Image Interpretation, Computer-Assisted/methods, Male, Middle Aged, Nerve Net/pathology, Neural Pathways/pathology, Reproducibility of Results, Sensitivity and Specificity, Young Adult
Pubmed
Web of science
Open Access
Yes
Create date
07/03/2016 18:45
Last modification date
20/08/2019 12:35
Usage data