Enumération complète des classes de formes parfaites en dimension 7
Details
Serval ID
serval:BIB_09CE53D2538F
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Enumération complète des classes de formes parfaites en dimension 7
Director(s)
Sigrist F.
Codirector(s)
Suter U., Martinet J., Oesterlé J.
Institution details
Université de Neuchâtel
Publication state
Accepted
Issued date
1991
Language
french
Number of pages
80
Notes
Une annexe de 310 pages (Description des formes parfaites en dimension 2, en dimension 3, en dimension 4, en dimension 5, en dimension 6 et en dimension 7) présente en détail toutes les formes parfaites jusqu'en dimension 7.
Abstract
La classification des formes parfaites en dimension inférieure à sept est un problème résolu depuis plus de trente ans. En 1831 déjà, Gauss montre que le réseau cubique à faces centrées est l'unique réseau absolument extrême en dimension trois. Dans cette dimension, toute forme parfaite est équivalente à A3; il n'existe donc qu'une seule classe de formes parfaites et ces formes sont absolument extrêmes. Pour les dimensions quatre et cinq, il faut attendre les travaux de Korkine et Zolotareff en 1877. En dimension quatre, on observe deux classes de formes parfaites (A4 et D4). En dimension cinq, leur nombre s'élève à trois. Quatre-vingts années plus tard, en 1957, Barnes démontre qu'il n'y a que sept classes de formes parfaites à six variables, dont une qui n'est pas extrême, conformément à ce que pensait Voronoï. A la fin de son article, Barnes prévoit que ses méthodes ne permettront certainement pas de traiter la dimension sept, vu la complexité du problème.
Le résultat principal de ma thèse de doctorat résout le problème en dimension sept. Je montre en effet qu'il n'existe que trente-trois classes de formes parfaites dans cette dimension.
Le résultat principal de ma thèse de doctorat résout le problème en dimension sept. Je montre en effet qu'il n'existe que trente-trois classes de formes parfaites dans cette dimension.
Create date
28/09/2010 20:36
Last modification date
20/08/2019 12:31