Magnetic Resonance Imaging Liver Segmentation Protocol Enables More Consistent and Robust Annotations, Paving the Way for Advanced Computer-Assisted Analysis.
Details
Serval ID
serval:BIB_022D72FA60FB
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Magnetic Resonance Imaging Liver Segmentation Protocol Enables More Consistent and Robust Annotations, Paving the Way for Advanced Computer-Assisted Analysis.
Journal
Diagnostics
ISSN
2075-4418 (Print)
ISSN-L
2075-4418
Publication state
Published
Issued date
11/12/2024
Peer-reviewed
Oui
Volume
14
Number
24
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
Recent advancements in artificial intelligence (AI) have spurred interest in developing computer-assisted analysis for imaging examinations. However, the lack of high-quality datasets remains a significant bottleneck. Labeling instructions are critical for improving dataset quality but are often lacking. This study aimed to establish a liver MRI segmentation protocol and assess its impact on annotation quality and inter-reader agreement.
This retrospective study included 20 patients with chronic liver disease. Manual liver segmentations were performed by a radiologist in training and a radiology technician on T2-weighted imaging (wi) and T1wi at the portal venous phase. Based on the inter-reader discrepancies identified after the first segmentation round, a segmentation protocol was established, guiding the second round of segmentation, resulting in a total of 160 segmentations. The Dice Similarity Coefficient (DSC) assessed inter-reader agreement pre- and post-protocol, with a Wilcoxon signed-rank test for per-volume analysis and an Aligned-Rank Transform (ART) for repeated measures analyses of variance (ANOVA) for per-slice analysis. Slice selection at extreme cranial or caudal liver positions was evaluated using the McNemar test.
The per-volume DSC significantly increased after protocol implementation for both T2wi (p < 0.001) and T1wi (p = 0.03). Per-slice DSC also improved significantly for both T2wi and T1wi (p < 0.001). The protocol reduced the number of liver segmentations with a non-annotated slice on T1wi (p = 0.04), but the change was not significant on T2wi (p = 0.16).
Establishing a liver MRI segmentation protocol improves annotation robustness and reproducibility, paving the way for advanced computer-assisted analysis. Moreover, segmentation protocols could be extended to other organs and lesions and incorporated into guidelines, thereby expanding the potential applications of AI in daily clinical practice.
This retrospective study included 20 patients with chronic liver disease. Manual liver segmentations were performed by a radiologist in training and a radiology technician on T2-weighted imaging (wi) and T1wi at the portal venous phase. Based on the inter-reader discrepancies identified after the first segmentation round, a segmentation protocol was established, guiding the second round of segmentation, resulting in a total of 160 segmentations. The Dice Similarity Coefficient (DSC) assessed inter-reader agreement pre- and post-protocol, with a Wilcoxon signed-rank test for per-volume analysis and an Aligned-Rank Transform (ART) for repeated measures analyses of variance (ANOVA) for per-slice analysis. Slice selection at extreme cranial or caudal liver positions was evaluated using the McNemar test.
The per-volume DSC significantly increased after protocol implementation for both T2wi (p < 0.001) and T1wi (p = 0.03). Per-slice DSC also improved significantly for both T2wi and T1wi (p < 0.001). The protocol reduced the number of liver segmentations with a non-annotated slice on T1wi (p = 0.04), but the change was not significant on T2wi (p = 0.16).
Establishing a liver MRI segmentation protocol improves annotation robustness and reproducibility, paving the way for advanced computer-assisted analysis. Moreover, segmentation protocols could be extended to other organs and lesions and incorporated into guidelines, thereby expanding the potential applications of AI in daily clinical practice.
Keywords
Mri, computer-assisted analysis, deep learning, liver, radiomics, segmentation, MRI
Pubmed
Open Access
Yes
Create date
10/01/2025 14:52
Last modification date
11/01/2025 7:08