Human bony labyrinth is an indicator of population history and dispersal from Africa.

Détails

Ressource 1Télécharger: 1717873115.full.pdf (955.75 [Ko])
Etat: Serval
Version: Final published version
ID Serval
serval:BIB_00B4361FE936
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Titre
Human bony labyrinth is an indicator of population history and dispersal from Africa.
Périodique
Proceedings of the National Academy of Sciences of the United States of America
Auteur(s)
Ponce de León M.S., Koesbardiati T., Weissmann J.D., Milella M., Reyna-Blanco C.S., Suwa G., Kondo O., Malaspinas A.S., White T.D., Zollikofer CPE
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Statut éditorial
Publié
Date de publication
2018
Peer-reviewed
Oui
Volume
115
Numéro
16
Pages
4128-4133
Langue
anglais
Résumé
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons.

Mots-clé
bony labyrinth, human dispersals, morphometrics, stabilizing selection
Pubmed
Web of science
Open Access
Oui
Création de la notice
12/04/2018 17:52
Dernière modification de la notice
08/05/2019 13:39
Données d'usage