Representations of max-stable processes via exponential tilting
Détails
Télécharger: R2.TiltingSPA_V1.pdf (477.61 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_FA961B329180
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Representations of max-stable processes via exponential tilting
Périodique
Stochastic Processes and their Applications
ISSN
0304-4149
Statut éditorial
Publié
Date de publication
09/2018
Peer-reviewed
Oui
Volume
128
Numéro
9
Pages
2952-2978
Langue
anglais
Résumé
The recent contribution Dieker & Mikosch (2015) [1] obtained important representations of max-stable stationary Brown-Resnick random fields ζZ with a spectral representation determined by a Gaussian process Z. With motivations from \cite{DM} we derive for some general Z, representations for ζZ via exponential tilting of Z. Our main findings concern a) Dieker-Mikosch representations of max-stable processes, b) two-sided extensions of stationary max-stable processes, c) inf-argmax representation of any max-stable distribution, and d) new formulas for generalised Pickands constants. Our applications include new conditions for the stationarity of ζZ, a characterisation of Gaussian random vectors and an alternative proof of Kabluchko's characterisation of Gaussian processes with stationary increments.
Mots-clé
Modelling and Simulation, Statistics and Probability, Applied Mathematics
Création de la notice
22/10/2017 16:38
Dernière modification de la notice
21/11/2022 8:26