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Abstract: The recent contribution [1] obtained representations of max-stable sta-
tionary Brown-Resnick process (z(t),t € R? with spectral process Z being Gauss-
ian. With motivations from [1] we derive for general Z, representations for (; via
exponential tilting of Z. Our findings concern Dieker-Mikosch representations of
max-stable processes, two-sided extensions of stationary max-stable processes, inf-
argmax representation of max-stable distributions, and new formulas for generalised
Pickands constants. Our applications include conditions for the stationarity of (z,
a characterisation of Gaussian distributions and an alternative proof of Kabluchko’s
characterisation of Gaussian processes with stationary increments.
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1. INTRODUCTION

A random process ((t),t € T is max-stable if all its finite dimensional distributions (fidi’s) are max-
stable. For simplicity we shall assume hereafter that ¢(¢) has unit Gumbel distribution e™¢ ",z € R

for all t € T and shall consider 7 = R?or T = Z%,d > 1. In view of [2] any stochastically continuous
fdd

max-stable process ((t),t € T satisfies (below ‘= means equality of all fidi’s)
2,

with

(1.1) Cz(t) = max(Pi+Z(t)), teT,

where Z(t),t € T is a random process taking values in [—o0,00) with E{e?®)} = 1, € T and
IT = > ep, is a Poisson point process (PPP) on R with intensity e *dz. Further, Z;’s are
independent copies of Z being also independent of II; see for more details [3—13].

We shall refer to (z as the associated maz-stable process of Z; commonly Z is referred to as the

spectral process. For convenience, we shall write Z as
(1.2) Z(t) = B(t) -InE{ePW}, teT,

with B(t),t € T a random process satisfying E{e?®} < oco,t € T. Consequently, E{e?®)} =
1,¢t € T implying that the marginal distribution functions (df’s) of {; are unit Gumbel.
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One canonical instance is the classical Brown-Resnick construction with B being a centred Gaussian
process with covariance function r and thus 2In E{eZ®} = r(t,t) =: 02(t),t € T. In view of [14] the
law of (7 is determined by the incremental variance function (s, t) = Var(B(t) — B(s)),s,t € T.
This fact can be shown by utilising the tilted spectral process =,Z, h € T defined by

S.Z(t) = B(t)— B(h) —~(h,t)/2, teT.

The law of 2,7 is uniquely determined by the following conditions: =7 is Gaussian, =, Z(h) =0
almost surely (a.s.) and the incremental variance function of =, 7 is 7. Note that these conditions

do not involve 2.
Next, setting ZI(t) = B(t) — 0%(t)/2 + r(h,t) we have

(1.3) =.Z(t) = ZW@) - ZMn),  teT.
In view of Lemma 6.1 below Z" is the exponential tilt of Z by Z(h) i.e.,
P{ZM € A} = E{*WI{Z € A}}, VAeBR"),

where B(R”) is the o-field generated by all evaluation maps. The representation (1.1) implies that
(see e.g., [1, 15])

—InP{(z(t;) <x;,1 <i<n} = E{ max ez(t")_””"} = E{ez(h) max ez(t")_z(h)_“}

1<i<n 1<i<n

1<i<n

(1.4) = E{ max eEhZ(ti)_‘”}

holds for t; € T,x; € R;i <ni.e.,

(1.5) 2= (o2

Since as mentioned above the process =,Z can be characterised without making reference to o2,
by (1.5) it follows that the law of (z depends on + only!

Observe that we can define Z!" via exponential tilting for any random process Z such that
E{e?/™} = 1. Furthermore, the calculation of the fidi’s of (; via (1.4) does not refer to the
Gaussianity of Z, but only to the representation (1.1) and the fact that

(1.6) P{Z(h) > —o0} = L.

Consequently, under (1.6) we have that (1.5) is valid for a general spectral process Z with values
in R. Since we assume (1.6), then by (1.3)

(1.7) = Z(h) = ZM(h) — ZM(h) =0

almost surely, which in view of [16][Lemma 4.1] is a crucial uniqueness condition.

The change of measure technique, or in our case the exponential tilting has been utilised in the
context of max-stable processes in [6, 8, 17, 18]. In this contribution we present some further
developments and applications that are summarised below:



A)

(1.8)

(1.10)

REPRESENTATIONS OF MAX-STABLE PROCESSES VIA EXPONENTIAL TILTING 3

According to [19] the spectral process Z is called Brown-Resnick stationary, if the associated
max-stable process (7 is stationary i.e., (z [ L"C, for any h € T, where L is the lag
(backshift) operator with L" its hth iterate.

For a positive o-finite measure p on 7T, let I, = > o7

ep,1) be a PPP on R x T with
intensity e Pdp-u(dt) being independent of anything else. If Z is a Brown-Resnick stationary
and sample continuous Gaussian process on 7 = R?, in view of [1][Th. 2.1] (see also [20][Th.
2]) the following Dieker-Mikosch representation
Cz(t) Jad 1ax (B +Zi(t—-T;) — ln/ eZis=T0) u(ds)) , teT
T

(2

is valid, provided that y is a probability measure and a.s. Z(07) = 0 with 07 the origin of
T. For notational simplicity hereafter we shall write simply 0 instead of 0.

We shall show that (1.8) given in terms of the tilted spectral processes holds for general
non-Gaussian Z and some positive o-finite measure p on 7, see Theorem 2.2 and Theorem
6.5 below. Motivated by [1] we present some useful conditions for the stationarity of (.
As a by-product we derive a new characterisation of Gaussian df’s and give a new proof of
Kabluchko’s characterisation of Gaussian processes with stationary increments, see Theorem
2.7 and Theorem 2.8 in Section 2.

An interesting class of stationary max-stable processes (z(t),t > 0 is constructed by Stoev
in [21], where B(t),t > 0 is a real-valued Lévy process with E{e?()} < oo and Z is specified
via (1.2). We show in Theorem 3.1 that for general Z a two-sided extension of (z can be
defined in terms of some spectral process Y determined by =, 2, h € T.

If (1.7) does not hold we modify the definition of =, 7, see Lemma 4.1. Such a modifi-
cation shows that the tilted spectral processes have a component which is identifiable and
moreover it determines the law of (z. Specifically, for any ¢;,...,t, € T and H the df of
(Cz(t1),...,Cz(tn)), we derive the following (referred to as the inf-argmaz representation)

n

—InH(z) = Z e "Wy (z), Vo= (r1,...,1,) €R",
h=1
with U}’s determined by the identifiable part of =, 7, see below Theorem 4.2. In the special
case that H is continuously differentiable (1.9) is a consequence of Euler’s homogeneous
function theorem, see e.g., [22][Eq. (9.11)].
For ((t),t € R% d = 1 being max-stable and stationary [23] introduced the generalised
Pickands constant HY, defined by

HS, = lim iIE{ sup eZ(t)}, 0 >0,
T—oo T | yeszam0,174

with the convention that 0Z¢ = R?. We show in Section 5 sufficient conditions that imply

the positivity of 7—[5Z for 6 > 0,d > 1 and derive further two new representations for d > 1

and P{Z(t) = —oo} > 0,t € T in terms of the so-called spectral tail process defined in [24].

Our new formulas for Pickands type constants are important due to the connection with

the extremal index of stationary times series, see (6.19) below.
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Organisation of the rest of the paper. In Section 2 we establish the Dieker-Mikosch representation
of (7 if Z satisfies (1.6) for any h € T, and discuss further some new conditions for the stationarity
of (. We continue with an application in Section 3 where we show how to construct a two-sided
extension of (7. Section 4 is concerned with the general case that Z takes values in [—00, 00). New
formulas for H$ are displayed in Section 5 followed by discussions and further results in Section 6.
All the proofs are relegated to Section 7.

2. MAX-STABLE PROCESSES WITH REAL-VALUED Z

Let Z, Z;,1 > 1,11, be as in the Introduction and suppose that for some i € T the random variable
(rv) Z(h) satisfies (1.6) (the case P{Z(h) = —oo} > 0 will be discussed in Section 4). Let in the
following F_., denote the set of functions on 7 with values in [—00, 00) excluding the function f
equal to —oo and write B(F_.,) for the o-field generated by all evaluation maps. As in (1.3) we
define £,Z by E,Z(t) = ZW(t) — ZM(h),t € T with ZI" the exponential tilt of Z by Z(h) i.e.,
P{Z" € A} = BE{eZ?WI{Z € A}},VA € B(F_o).

By (1.4), if n is a rv with values in [—00, 00) being independent of Z satisfying E{e"} = 1, then

(2.1) v = ¢,

with (y the max-stable process associated to Y (t) = n+ Z(t),t € T. Although Y and Z are
completely different processes, we have that =,Y fad ZnZ. Surprisingly, as shown below this fact

holds for a general Y satisfying (2.1); see also its extension in Lemma 8.1.

Lemma 2.1. ([16/[Lemma 4.1]) If (2.1) holds and a.s. Y (h) = Z(h) = 0 for some h € T, then
fdd
Y = Z

The claim of Lemma 2.1 is included in [8] and [25]; a direct proof is mentioned in [26] which is
elaborated in [27][Lemma 1.1]. We present yet another proof in Section 7.

Since when P{Z(h) > —oo} = 1 we have =,Z(h) = 0 almost surely, then Lemma 2.1 proves the
uniqueness of =, 7 (in the sense therein). This implies that Z,Z can be determined directly in
terms of (.

Our next result below confirms this. Moreover we show that (; possesses a Dicker-Mikosch
representation determined by =Z,Z and some positive o-finite measure p on 7T, provided that
Sz = [ e u(ds) is a rv satisfying

(2.2) P{S; < o0} = 1.

Note that the assumption E{e?®} = 1,¢ € T implies that (2.2) holds for any probability measure
p on T. Throughout in the following H stands for the df of (Cz(t1),...,{z(t,)) for some distinct
t1,...,t, € T and denote by W = (Wy,..., W,) an n-dimensional random vector with df G given
by

_ 1 ln<H(min(a:1, 0),...,min(z,,0))
In H(0) H(z)

Since H is associated, see e.g., [28, 29], then H(0) > 0. In view of [30][p. 278], see also [31][Eq.

(2.6)] the df’s G corresponding to different ¢;’s are the so-called generalised Pareto df’s, here referred

(2.3) G(z)

>, x=(x1,...,2,) € [—00,00]".
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to as the associated GPD’s of (5. Set below
W o owhy = w® LW (W, >0), he{l,... n}
and note that W}Eh) is a unit exponential rv; here we write 2 for equality of df’s.
Theorem 2.2. i) If P{Z(h) > —oco} =1 for some h € T, then for distinct t; = h,ts, ..., t, €T
(2.4) (EhZ(tg), . ,EhZ(tn)) 4 (WQ(’” W, W Wf’”).

n

) If p is a positive o-finite measure on T satisfying (2.2) with 1, = Y2, e(p, 1) a PPP on RX T
with intensity e Pdp - p(dt) being independent of anything else we have

(2.5) Cz(t) fdd max (R +Z=07(t) — ln/reETiZi(s) M(ds)), teT.

Example 2.3. Consider Z(t) = B(t) — r(t,t)/2,t € T with B a centred, sample path continuous
Gaussian process with stationary increments and covariance function r. Setting o?(t) = r(t,t) we
have

(2.6) ShZt) Y Bt — R)— 0%t —R)/2, teT

for any real-valued rv R independent of B. Hence (2.5) reduces to [1][Th. 2.1] when p is a probability

measure.

Remark 2.4. If (5(t),t € R% d =1 is stationary and a.s. Z(0) = 0, then by (2.6) the representa-
tion in (2.5) agrees with the finding of [25][Th. 4].

Several contributions have investigated the stationarity of max-stable processes and particle sys-
tems, see e.g., [6, 14-16, 19, 32-35]. The main result of this section displays three criteria for the
stationarity of (5. Below we define L*Z,Y := L*(Z,Y) by

(2.7) LPZ,Y (1) = LYYl (1) — Yl(a)) = Y1 (¢ — b) — YI9(a)

for any a,t — b,t € T and some random process Y such that E{e¥ (@} = 1 with Y1 the tilted
process by Y'(a). Recall that in our notation 7 = R? or 7 = Z% and 0 is the origin in 7.

Theorem 2.5. Let (4(t),t € T be a maz-stable process with unit Gumbel marginals and spectral
process Z defined via (1.1) and let for some o-finite measure p on T the PPP II, be as in the
Introduction. If (1.6) holds for any h € T, then the following are equivalent:

a) Cz is stationary i.e., (z [ Crny forany h € T.

b) For any positive o-finite measure 1 on T we have that (2.5) holds with L2 Z; instead of =1, Z;,
provided that Sz = fT e?®y(dt) is a positive finite rv.

c¢) For any functional ' : F_o, — [0,00) which is B(F_)/B(R) measurable, such that U'(f + ¢) =
['(f),ceR, f € F_ holds, we have

(2.8) E{e?tNT(2)} = E{# T (L"Z)}, VYheT,

provided that the expectations exist.
d) For any a,a+h €T

fdd

(2.9) EainZ = L"Z,2.
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Remark 2.6. i) If Z is as in Ezample 2.3, then statement a) = ¢) in Theorem 2.5 has been
shown in [1][Lemma 5.2], whereas the non-Gaussian case is derived in [23][Lemma 1] under the
restriction that a.s. Z(0) = 0.

i) If statement ¢) and d) in Theorem 2.5 hold for any h € T and a = 0 being the origin, then (z
1s mazx-stable and stationary.

We present next two applications, a third one is displayed in Section 3.
Motivated by [36][Th. 1] we derive below a new characterisation of multivariate Gaussian df’s.
Hereafter (-,-) stands for the scalar product in R?.

Theorem 2.7. Let X be a d-dimensional random vector with non-degenerate components and define
Z(t) = (t, X) —k(t),t € RY, with k some measurable function satisfying (0) = 0. Suppose that the
associated maz-stable process (z(t),t € R has unit Gumbel marginals and set (5 (t) = (4 (t),t € Z2.
If for any § € (0,00), h € 624

(2.10) =2 Y Lhz(t), ez,

then X is Gaussian Ng(p,X) and s(t) = (t, 1) + (¢, 5t)/2,t € R4,

Our second application is a different proof of Kabluchko’s characterisation of Gaussian random
fields with stationary increments stated in [32][Th. 1.1].

Theorem 2.8. Let B(t),t € R? be a centred Gaussian process with non-zero variance function
o2 such that o(0) = 0. The maz-stable process (z associated to Z(t) = B(t) — o*(t)/2,t € R? is

stationary if and only if B has stationary increments.

3. TWO-SIDED STATIONARY MAX-STABLE PROCESSES

Consider (z(t),t > 0 defined via (1.1), where Z(t) = B(t) —t/2,t > 0 with B(t),t € R a two-sided
standard Brownian motion. The seminal article [37] showed that (z is max-stable and one-sided
stationary. In view of [19], in order to define (z(t) also for ¢ < 0 i.e., to define a two-sided
stationary max-stable process (7, we can take Z(t) = B(t) — |t| /2,Vt € R. This construction is
fundamental since B is both a centred Gaussian process with stationary increments and also a Lévy
process. Stoev showed in [21] that if B(t),¢ > 0 is a real-valued Lévy process with Laplace exponent
®(0) = E{e’BM} being finite for § = 1, then (z(t),t > 0 defined by (1.1) with Z(t) = B(t)—®(1)t is
both max-stable and stationary. The recent contribution [38] is primarily motivated by the question
of how to define directly Z(t),t < 0 such that (z(¢),t € R is both max-stable and stationary. In
Theorem 1.2 therein a two-sided version of Z and thus of (z is constructed. Specifically, as in
[38] define Z(t),t < 0 by setting Z(t) = Z~(—t), t < 0, where Z~(t),t > 0 is independent of
Z(t),t > 0 such that —Z () is the exponential tilt of Z at ¢ i.e., in our notation since a.s. Z(0) = 0,
then for any ¢ > 0

Z7(t) =5, Z(—t) = Z19(0) — Z2W(t) = —Z1(1).
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Hence, in view of [39][Theorem 3.9] (see also [40]) Z~ is a Lévy process with Laplace exponent
InE{e?” W} = &(1 — ) — (1 — 0)®(1). Our next result is not restricted to the particular cases of
Z being a Lévy or a Gaussian process.

Theorem 3.1. Let (z(t),t > 0 be a max-stable and stationary process determined by Z as in
(1.1) with E{e?®} = 1,¢+ > 0. If (1.6) holds for any h > 0, then there exists a random process
Y(t),t € R such that for distinct ty,...,t, € R

(3.1) (Y(tl), . ,Y(tn)> 4 (EhZ(tl YR, Bt + h)), ho= —min(O, min tj>

1<j<n

and Cy (t) Jdd Cz(t),t > 0. Moreover Y (t),t € R is Brown-Resnick stationary.

Example 3.2. (Brown-Resnick process) Let (z(t),t > 0 be a maz-stable process associated to
Z(t) = B(t)—o*(t)/2,t > 0 with B(t),t € R a centred Gaussian process with stationary increments
and variance function o*. If o(0) = 0, by Example 2.3 and (3.1) it follows easily that Y [ A
where Z*(t) = B*(t) — o*(|t])/2,t € R with B*(t),t € R a centred Gaussian process with covariance
function (a*(|t]) + o2(|s|) — a%(|t — s|))/2. Since B* has stationary increments, then by Theorem
2.8 (7 1is stationary.

Example 3.3. (Lévy-Brown-Resnick process) Suppose that Z(t),t > 0 is a Lévy process with
E{e?®} = 1,t > 0. According to [21] the maz-stable process (z(t),t > 0 associated to Z is
stationary. Hence we are in the setup of Theorem 3.1, which ensures that (y(t),t € R is a maz-
stable stationary extension of (z. Further for s <t <0 by (3.1) and Z(0) =0

4

(3.2) (V(5) = Y(0,Y (1) L (=259 —5), 25— 5) - 21(~s)).

Since Z(t),t > 0 is a Lévy process, then it follows easily that Y agrees with the definition of [38].

4. GENERAL SPECTRAL PROCESSES

In this section we assume that Z(h) = —oo for some h € T with non-zero probability. Write next
(set below 0 - 0o = 0)

(4.1) 2 Vi + (1= J) W,
where Jj, is a Bernoulli rv with
P{J, =1} =P{Z(h) > —o0} € (0,1]

and

Vi "W Z)(Z(h) > —o0), Wi Z|(Z(h) = —o0).

Furthermore, Jy, V},, W), are mutually independent and
P{V,(h) > —c0} = P{W},(h) = —c0} = 1.
For Vh[h] given via exponential tilting as

P{V" € A} = B{"(M-WEE NIy, e AV A € B(F_y)
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define the tilted spectral process =,Z by

(4.2) ZZ(t) = JiOw(t) + (1= J)Wi(t) = VI ()] = nP{J, =1}, teT,
where
(4.3) Ou(t) = ZVi(t) = V() — V' (h).

Hereafter, we shall consider Vh[m to be independent of .J, and W),.
The next result establishes the counterpart of (1.5). Further, we give a representation of (z which
is motivated by [7][Th. 2].

Lemma 4.1. For any h € T we have (z fad Cz,z. Moreover, for any probability measure v on T
we have (yz fdd n where n(t) = max;>1 (P + Z,Z;(t)),t € T with (P;,T;)’s the points of a PPP on
R x T with intensity e Pdp - pu(dt) being independent of Z;,i > 1.

In view of Lemma 8.1 in Appendix O, h € T is the identifiable part of the family of tilted spectral
processes =, Z, h € T. Moreover, as shown below Oy, h € T determines the law of (.

Theorem 4.2. (Inf-argmaz representation) For any distinctt; € T,i < n the df H of ((z(t1),...,(z(tn))
1S given by

—InH(z) = Z e W (x), with Vi(z) = P{inf argmax; <;, (0, (t;) — z;) = k}
k=1

for any x = (xq,...,2,) € R".
We conclude this section with an extension of Theorem 2.5.

Theorem 4.3. Let Z(t),t € T be a random process with values in [—00,00). IfE{e?W} =1t €T
and (z is given by (1.1), then the following are equivalent:

a) Cz is max-stable and stationary.

b) For any I' as in Theorem 2.5 statement c)

(4.4) E{e#tMT(2)} =E{?@1(L'2)} = E{T(L"0,)}, a,a+heT.
¢) For any a,h € T and Z with representation (4.1) we have
(4.5) Ouin X o,

Otherwise specified, hereafter we set

©=00 z=(21,...,2,).
Remark 4.4. IfT',(z are as in Theorem 4.3, then (4.4) is equivalent with
(4.6) E{I{Z(~h) > —cc}e? NI (L' Z)} =E{T'(©)}, heT.

Hence the inf-argmazx representation in (4.4) simplifies to

(4.7) —InH(z) = Ze*x’“]P){inf argmax, <;, (L"*O(t;) — x;) = k}, z eR"”

k=1
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and thus we conclude that the fidi’s of (; are given in terms of those of ©.

5. GENERALISED PICKANDS CONSTANTS

Given Z(t),t € R, d > 1 with representation (1.2) we define for any § > 0 the generalised Pickands
constant HY, as in (1.10) i.e.,

HS = lim idIE{ sup ez(t)}.

tedZn[0,T)4

A canonical example here is the Brown-Resnick stationary case with Z(t) = v/2B,(t) —|t|* ,t € R,
where B,,a € (0,2] is a standard fractional Brownian motion with Hurst index «/2 € (0,1]. For
this case H$ is the classical Pickands constant, see e.g., [41-46] for its properties.
The recent contribution [23] investigates HJ under the assumption that a.s. Z(0) = 0 and d = 1.
In this section we shall assume that (z(¢),t € T is max-stable, stationary and has unit Gumbel
marginals. In order to show the positivity of 1%, we shall suppose further that

(5.1) P{/Rd O\ (dt) < oo} =1,

where )\ is the Lebesgue measure on R?. In light of [47][Th. 2] (see also [48]) (5.1) is equivalent
with

(5.2) P{”tlllinmza) - —oo} ~ 1.

Under (5.1), as in [23][Th. 1] if a.s. Z(0) = 0, then for any § > 0 and d =1
max d eZ(t)

5.3 o =E Leon 0

where 115 denotes the counting measure on §Z%. If P{Z(0) = 0} < 1 the expression in (5.3) needs
to be modified, since by Lemma 7.1 in Appendix, for any 7" > 0 and d > 1 we have

o)
. MmaXyeszdn[—hT,(1-h)T]d € T
H, = 1 E dh
z 7% [0,1]¢ { dGG(S)M(S(d‘S)}# (dh)
(5.4) =: lim nr(h)u” (dh),

T—oo [071}(1

fazdm[_hT,u_h)ﬂ

where p®(dh) = us(T'dh)/T?. In applications, often Pickands-type constants corresponding to
§ = 0 appear. In order to define H%, we shall suppose further that (; has cadlag sample paths.
This is equivalent with E{sup,.x eZ)} < oo for any compact set K C R?, see [49]. The definition
of HY is exactly as in (6.9) where we interpret 0Z¢ as R? i.e., HY = limy_,o0 7 E{sup;c(o 190 €7}
The existence and the finiteness of H% follow by the stationarity and max-stability of (. As in the
case § > 0 of interest is the positivity of HY%, derivation of tractable expressions and sharp bounds
for 13,8 > 0. For Z Gaussian or Lévy and d = 1, Z(0) = 0 a.s. [23] shows that under some weak

restrictions

Z(t)
0 _ g d SUPiera € 0 .
Hz {fRd ezox(ds) <)
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Since the aforementioned results cover only the case Z(0) = 0 a.s. and d = 1, below we shall derive
two formulas for H%,d > 0 for the general case d > 1 and P{Z(0) = —oo} > 0. If § = 0, we give a
positive lower bound for HY.

Theorem 5.1. Let Z(t),t € R% d > 1 be such that the associated max-stable process (7 is stationary
with unit Gumbel marginals and suppose that (5.1) holds.

i) For any 6 >0
max;cgz4 €2

: 2 = E
(5.5) Hy {5d Jor €960 15(ds)

Moreover, if further the fidi’s of © are absolutely continuous, then

} =: % € (0,00).

1
5 == — =
(5.6) Hy, = (5dP{f§?£§@“) 0}.

ii) If § =0, then

SUpepa €20

Ja €9BIN(ds)

Remark 5.2. i) If Z is as in Example 3.2, then Z = © and thus (5.6) follows from [23][Th. 1]
combined with [7][Th. 8 and Remark 9]. A direct proof for B being a standard fractional Brownian
motion is given in [50][Prop. 4]. The lower bound HY > C° is derived in [25][Th. 1] for d =
1,Z(0) = 0. It is of interest (and open question) to know general tractable conditions that yield
HY = C".

i) If Z(t),t € R? is as in Theorem 5.1, then for any § > 0 we have (see for related results
11, 51, 52))

(5.7) HY > ]E{ }:: C? € (0,00).

(5.8) lim IP’{ sup  (z(t) <z + dlnT} —e M7 VYreR

T=o0 Yieszdn(o,T]d
Consequently, §4HS, € (0,1],0 > 0 is the extremal index of the stationary random field (4 (t),t €
AR
iii) Generalised Pickands constants have appeared also in the non-Gaussian setup, see e.qg., [53][Lemma
5.16] and [5}].

6. DiscussioNs & FURTHER RESULTS

6.1. Tilted processes. If Z(t),t € T is a random process with finite p(h) = InE{e?"} h € T,
then we define Z" by

P{ZM e A} = E{e?WW{Z e A}}, AecB(F_o).

The exponential tilting of df’s in the exponential family can be calculated explicitly. In particular,
for the Gaussian case, the tilted process is again Gaussian, with the same covariance function, but

modified mean, see [55]|[p. 130] or [20][Lemma 1].

Lemma 6.1. Let Z(t),t € K be a real-valued Gaussian process defined on some set K with covari-
ance function r. For any h € K the random process Z" is again Gaussian and moreover

(6.1) QIR

Z(t) +r(ht), tek.
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Conversely, if Z(t),t € K is for some h € K a Gaussian process with covariance function r and

mean r(h,t), then Z is a centred Gaussian process with covariance function r.

Example 6.2. Consider Z(t) = B(t) — r(t,t)/2,t € K with B a centred Gaussian process with
covariance function r. For any h € K by Lemma 6.1 ZWM(t) fa B(t) —r(t,t)/2 + r(t, h) implying
that

fdd

(6.2)  ZnZ(t) = Z"(t) — ZMW(h) = B(t) — B(h) — Var(B(t) — B(h))/2, teKk,

which agrees with the definition of Z,7Z given in (1.3).

Example 6.3. For (s defined in Example 3.2, by (6.2)

fdd

0, (1) =2, 2(t) ™ B(t) — B(ty) — Var(B(t) — B(ty))/2, t.ty€T.

Hence (1.9) holds with Uy, the df of the Gaussian random vector (O (t1),...,Ok(tn))—n (the sub-
script _, means that the hth component is dropped). Such a representation of max-stable Hiisler-

Reiss df has been derived by another approach in [56], see also [57].

Remark 6.4. If a.s. Z(h) > —oo, then Z,Z = Oy, and thus it can be also calculated using (2.4).
If P{Z(h) > —o0} > 0, then in view of Lemma 8.1, we have that (2.4) holds with ©y, instead of

=nZ. Hence when the df’s of the associated GPD’s of (5 are known, we can calculate ©y using the
right-hand side of (2.4).

6.2. Dieker-Mikosch representation. In view of our findings in Section 2 we have the represen-
tation (recall (2.5))

(6.3) G (1) max (P + Fi,T), teT,

where (F;,T;)’s are the points of a PPP II, on R x 7 with intensity e ?dp - p(dt) being further
independent of F;’s which are independent copies of a random shape function F' defined by

(6.4) F(t,h)=Z=,Z(t) — ln/ =) (ds), hiteT,
T

with ;¢ a positive o-finite measure on 7 (recall Z;’s are independent of the points of II,).

Next, we shall assume that Mz = sup,ce?® and Sz = [ ¢ p(dt) are non-negative and finite
rv’s. The representation (2.5) of (7 is shown under the assumption that Sz is a.s. positive. Since
we assume that E{e?®)} = 1t € T, if p is a probability measure, then the finiteness of Sz is
guaranteed also for general spectral processes Z with values in [—o00, 00). However, Sz can be equal
to zero with non-zero probability. Therefore, in this section the Dieker-Mikosch representation for

Z with values in [—00, 00) will be shown under the following restriction
(65) P{MZ > O,«SZ = 0} =0.

If 1 possesses a positive probability mass function p(t),t € T = {t,...,t,}, then

P{My > 0,8; =0} = ]P’{MZ > 0,3 plty)e”®) = o} _0,

k=1
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hence (6.5) is valid for such . Similarly, (6.5) holds also for p the counting measure on 7 = Z?
and we do not need further conditions on Z to show that Sz is a rv.

Theorem 6.5. Let (4(t),t € T be a maz-stable process with representation (1.1) and spectral
process Z satisfying (4.1) being both measurable and separable. If p is a positive o-finite measure
on T such that (6.5) is valid with Mz, Sz being two non-negative finite rv’s, then (6.3) holds with

random shape function F given by

(6.6) F(t,h) = On(t) — In / ) (ds), hteT.
T

For the case that Z is Brown-Resnick stationary we have the following mixed-moving-maxima (M3)
Dieker-Mikosch representation:

Corollary 6.6. Under the assumptions of Theorem 6.5, if further (7 is stationary, then (6.3) holds
with random shape function F given by

(6.7) F(t,h) = L"O(t) — In / e'O6) u(ds),  hteT.
T

Conversely, if for some measurable and separable random process O(t),t € T we have that
[ €99 u(ds) is a positive rv with i the Lebesgue measure on T, then ((t),t € T with representation
given by the right-hand side of (6.3) and random shape function F' given in (6.7) is maz-stable and
stationary.

Remark 6.7. In the special case d =1 and P{Z(0) = 0} = 1 the representation (6.7) is stated in
[23][Thm. 3.1].

6.3. Max-stable processes with Fréchet marginals. Our results derived under the assumption
of Gumbel marginals hold with minor adjustments when the marginals are assumed to be Fréchet or
Weibull. Since quite often in applications max-stable processes (7 (t),t € T with Fréchet marginals
are considered, see e.g., [58—-63] we shall discuss these processes in some details. Specifically, we

define

(6.8) Co(t) max PZi(1), teT.

where Y7, dp, is a PPP on (0, c0) with intensity 2~ 2dz being independent of Z;,7 > 1 which are
independent copies of a non-negative random process Z(t),t € T with E{Z(t)} = 1,t € T. Let
Vi ™ Z|(Z(h) > 0) and recall that 1 = E{Z(h)} = E{V,(R)}P{Z(h) > 0}. As in the Gumbel

case, the tilted spectral processes Oy, := Z,Vy,, h € T are defined by (interpret below 0/0 as 0)

P{O, € A} — E{%H{Vh/vh(h) e AY} = E{Z(m1{z(h) > 0)1{Z/2(h) € 4}

(6.9) - [r S (h) > OYI{f/f(h) € Abw(df), A B(F).

where Fj is the set of non-negative functions on 7 excluding the zero function endowed with the
o-field B(Fy) generated by all evaluation maps and v stands for the law of Z.
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If H denotes the df of ({z(t1),...,(z(t,)), then its marginals are unit Fréchet and moreover its

inf-argmax representation is given by

n

1 T; Z;
~nH(z) = 2 S P{max 0, (1) < T max €,(1) <
"1 O, (t;

(6.10) = Z I—P{inf argmax; <, (%) = k}, z € (0,00)".

k T i

k=1
Note in passing that if (7 is stationary, then by (4.5)
@tk fid Ltk@?

hence (6.10) is determined only by © in this case (recall that we set © = ).
Next, as in [47] define the functional PPP ® = {¢;,i > 1} on Fy with ¢; = P;Z;,i > 1 and intensity

measure ¢ determined by

(6.11) q(A) = / q(df) :/ P{uZ € AYu=?du, A€ B(F).
A 0
We have that H is determined by ¢ as follows
(6.12) —InH(x)=q{f € Fo: f(t;) > x;, forsomei=1,...,n}, x€(0,00)".

Remark 6.8. A direct implication of (6.11),(6.12) and Lemma 2.1 is that for any two random
processes Y (t), Z(t),t € T such that E{Z(t)} € (0,00),t € T and

(6.13) / P{uZ € AYu=?du = / P{uY € A}u"2du, A€ B(F),

0 0

then 7 & Y, provided that a.s. Z(h) = Y (h) = 1 for some h € T. Note further that in view of
fdd

Lemma 8.1 the relation (6.13) implies ©y, 144 =, U, with Uy, ™2 Y|(Y(h) > 0).
Denote by ¢, h € T the extremal function at h (see [17, 20, 64] for details) i.e., this is the set of
functions ¢ € ® such that ¢(h) = Z(h).

It follows that &, = dN{f € Fy: f(h) > 0},h € T is a PPP with intensity

(6.14) qn(A) /000 P{uO;, € AYu~?du, Ac B(F),

which is a minor extension of [20][Prop. 2] where additionally ( is assumed to have continuous
sample paths. The properties of @} can be utilised to give an alternative proof that a) implies d)
in Theorem 4.3.
To this end, we note that if {; has continuous sample paths, in view of [17][Prop. 4.2] the expression
in (6.9) yields

fdd
(6.15) O, "= ¢y /Z(h), heT.
As suggested by a reviewer, (6.15) can be utilised to show that Theorem 4.3 d) follows by the
stationarity of (; (when (z has continuous sample paths).
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6.4. Tilt-shift formula. Let X (¢),t € Z? be a real-valued stationary time series. Commonly, X
is called jointly regularly varying with index a > 0, if the random vectors (X (t1),..., X (t,)),t; €
7% i < n are for any n € N regularly varying with index . For such X, as shown in [24] there
exists the so-called spectral tail process (STP) ©(t),t € Z% with ©(0) = 1 a.s. that satisfies the
time-change formula of [24], which in our context reads

(6.16) E{|6(-n)|“I(L"®)} =E{I'(©)}, heZ?

for any 0-homogeneous integrable functional I : [0, 00)Z — R that vanishes for z € [0, 00)Z, 2y = 0.

If ¢4(t),t € R? is a max-stable stationary process with marginals ®,(z) = e ¥/*" 2 > 0, then
clearly (Cz(t1),...,Cz(tn)),t; € Z%i < n are for all n € N regularly varying with index «, and
therefore (4(t),t € Z has a STP which we denote by ©. Below we specify © in terms of Z utilising
i) tilting (change of measure) for V; Jdd Z|(Z(0) > 0) and ii) the tilt-shift formula (6.17).

Theorem 6.9. If (4(t),t € R is a stationary maz-stable process with unit marginals ®,, 0 > 0,
then Cz(t),t € Z% has STP O(t) = ZgVy(t) > 0,t € Z% and for any 0-homogeneous functional T :
Fo — [0,00) which is B(Fy)/B(R) measurable we have

(6.17) E{Z*(-hWI(L"2)} = E{Z*(0)T(Z2)} =E{T'(®)}, heR?

provided that the expectations exist.

By the above clearly the STP of (7 is non-negative, and if P{Z(h) > 0} = 1,h € Z%, then
CR

Consequently, (6.17) reduces to (6.16). Note that ©(t) = ZV;(t) is defined for any ¢ € R? and
satisfies (6.17) for all t € RY, whereas the time-change formula of [24] is stated only for discrete
stationary time series.

To this end, for (4(t),t € R max-stable and stationary as above, we give the formula for Pickands
constant H}, which is simply the extremal index of the stationary time series (z(t),t € Z. If almost
surely

(6.18) o) — 0, |t| — oo,

then by Theorem 5.1 the Pickands constant HJ, is given by
maxyez |O(t)|"

= e € 01

We write absolute values in the rhs of (6.19), since in view of [66] this formula also holds for the

(6.19) Hy = E{

candidate extremal index of a multivariate regularly varying (with index «) time series with STP
©, provided that (6.18) holds.

7. PROOFS

PROOF OF LEMMA 2.1 For any k > 1,t; € T,z; € R,i < n,z,41 > 0, the assumption Y (h) = 0
a.s. implies (set ¢, = 1/(1 —e V%), K ={1,...,n+ 1}, t,1 = h Y, =Y(t))

]P’{Vj € K:(y(ty) <m+ lnk‘(y(h) > lnk}
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— [e’ Jo H{FEK:Y; >a 4 mk—yte v dy _ = fo P{Ynr1>Ink—y, or JEK:Y;>a;+Ink—y}e dy]

— [e—%fm P{IEKY;>a;—yye v dy _ ,—4 fu P{Ynr1>—y, or JEKY;>a;—y}e ™ dy:|

— /R[IP’{y>O, ordje K:Y; >xj—y}—]P’{EIj6K1Yj>xj—y}]e_ydy, k — oo
= /R[]P){VjeK:Yjng—y}—]P’{ySO,VjEK:Y}ga;j—y}}eydy

— [ Pie K Y <0 - yledy

= ]PO{VjGK:ijtgng},

where € has a unit exponential df being independent of Y. Consequently, since a.s. Y, =Y (h) =0

we have the convergence in distribution as £ — oo

(1) (1) = Gr()ee o Grlta) = G (h). G (1)) | (v () > k) 5 (..., Y2, ©),

hence the proof is complete. U
PROOF OF THEOREM 2.2 i) Let H be the df of (Cz(t1),...,(z(t,)). For W with df G given in
(2.3) set (WM. Wiy = W|(W), > 0). If h € {t1,...,t,}, then by [30][Eq. (8.67)]

n

(Cz(tl) “nk,...,Cs(ty) —In k) ‘ (Cz(h) > k) S (WP . W), koo

holds, see also [63][Eq. (13)]. (Note that W,gh), k # h can be equal to —oo with non-zero probabil-
ity). Hence the claim follows by (7.1).
ii) First note that E{e?®} = 1,¢ € T implies for p a probability measure on 7 (recall S, =

e Ou(ds)
E{S,} — /T E{eZ®} u(ds) = 1

and a.s. Sz < oo, which is assumed to hold if x4 is a positive o-finite measure. Since a.s. Z(h) >
—o00,h € T, then as. Sz € (0,00). Hence, for any h,t; € T,z; € R,i < n by Fubini-Tonelli
theorem
—InH(z) = ]E{& max e_z’“+z(t’“)}
Sy 1<k<n
o—Tk+Z(tk)—Z(h)

7.2 = [ B AWk dh
(7.2) [r { )

B AE{ max ¢ 32000 (fr O ) } p(dh).

1<k<n

Now, if 37o1 €(p,.1,,2,) is a PPP on R x T x R with intensity e Pdp - pu(dt) M (dz) where M is the
law of Z, then setting

(=

n(t) = max (Pz- —In /T =)= () u(dS))
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we have

—InP{n(t;) <z;,1<i<n} = E{ max eﬁHEhZ(tk)*ln(fT =17 (ds)) ,u(dh)},

7 1<k<n

hence the claim follows. 0
PROOF OF THEOREM 2.5 a) implies d):

Let t; € T,i < n be given. As mentioned in the Introduction for the validity of (1.5), since a.s.
both Z(a) > —oo and Z(a + h) > —oo hold, then we have

fdd fdd fdd
Cz = CEaZ = thEaZ = C5a+hz-

By our definition in (2.7)

L'=,7(t) = LMzt — Z219(a)) = 219t — h) — Z19(a), teT
and (1.7) we have a.s.

L"Z,Z(a+h) = Z4nZ(a+h) = 0.
and thus statement d) follows by Lemma 2.1.
d) implies ¢):
First note that by the shift-invariance of I"
E{T'(Zu102)} = E{”“™MI(Z~Z(a+h))} =E{e? T (2)}

and

E{I(L'Z,2)} = E{#“T(L"Z - Z(a))} = E{e?“T(L"2)}.
By statement d) we have that the fidi’s of =,,,Z and L'Z,7 are the same, which together with
the measurability of I' implies F(EaHlZ ) < F(LhEaZ ) Consequently, we obtain

E{l'(Zesn2)} = E{['(L'Z.2))} =E{”“"I'(2)} = E{”“T(L"Z)}

and thus the claim follows.
c) implies b):

If 1 is a probability measure on T, for any h,t; € T,x; € R,i < n by (2.9), Fubini-Tonelli theorem,
statement ¢) and (7.2) yield

[, e#Op(ds)
=: /E{ez(h)F(Z)},u(dh)
T

= /T E{T(L"E02)} pu(dh)
= E{T(L"Z2)},

—InP{Cs(t;) < ziyi=1,....,n} = /TIE{eZ(h) }u(dh)

with T a copy of T}, which is independent of ZyZ (recall 0 = (0,...,0)). Consequently,

_hl]P){(Z(t) <z.i=1.... n} = [E{ max e—mk-i—LTEoZ(tk)—lnfTeLTEOZ(S),u(ds) )
i) > 4y, ) ’ [<k<n
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The case that p is a positive o-finite measure on 7 such that (2.2) holds follows with similar
arguments.
b) implies a):
Let p be the Dirac measure at h. We have that (z has the same law as max;>1 (P,+Z0Z;(t—h)),t € T
and by (1.5), this implies that (z 1 Crhz, hence (y is stationary. O
PROOF OF THEOREM 2.7 Let p(t) = InE{e®%¥)} t € R? denote the cumulant generating function
of X. As shown in [36][Th. 1] (7 is stationary in R? i.e., in our setup Z(t) = (¢, X) — x(t),t € R?
is Brown-Resnick stationary, if and only if X is Gaussian with mean pu, covariance matrix > and
further k(t) = ¢(t),t € R Our assumption is slightly weaker since we assume the stationarity of
( restricted on §Z¢ for any § > 0 and not its stationarity on R¢.
As in the proof of Theorem 1 therein, our assumption is equivalent with

(7.3) @(zn: uiti) - 2": uip(t;) = 90<h + En: uiti> - z": uip(h + ;)

for any h,t; € 0Z%u; € R,i < n where .7 u; = 1. Write next [a] = ([a],...,[ad]) for any
a € R? with [a;] the largest integer smaller than a;. By (7.3) for any A € (0,1), > 0 and any
to,tl,tg € Rd (set h = (Sto,Zi = (5[tl/5],v = )\21 + (1 - )\)ZQ)

(V) = Ap(21) = (1 = Np(22) = @(h+v) = Ap(h+21) — (1 = Np(h + 22).
Letting 6 — 0 we obtain
Vo (At + (1 — Mta) = AVe(t1) + (1 — \)Ve(ta),

where V(t) denotes the gradient of ¢ at t € R%. Consequently, with the same arguments as in [36]
it follows that X is Gaussian with mean p and covariance matrix ¥ and further x(t) = ¢(t),t € R%
Hence the proof follows by Remark 2.6 ). O
PROOF OF THEOREM 2.8 If B has stationary increments, then by (2.6)

(7.4) =2 Y hz, WheT,

hence statement d) in Theorem 2.5 implies that (z is stationary. Note that (7.4) is previously
shown in [6, Prop. 2]. Conversely, if (7 is stationary, then by statement d) in Theorem 2.5 we have
that (7.4) holds, which combined with (6.2) yields for any h € T

B(t — h) — o2(t — 1) /2™ B(t) — B(h) — Var(B(t) — B(h))/2, teT,

hence B has stationary increments and thus the claim follows. O
PrROOF OF THEOREM 3.1 The proof is based on the result of Theorem 2.5, which is also valid for
T =[0,00). First, we show that Y can be defined using the Kolmogorov’s consistency theorem, see
e.g., [67][Th. 1.1]. It suffices to consider in the following only ¢; < --- < t,, € R such that t; < 0.
For any permutation 7 of ty,...,t, we have that

Yr(t)om(tn) = (Y<7T(t1>>"u,y<ﬂ(tn))) < <Eh(7r(t1)), . ,Eh(ﬁ(tn)))7 h=—t
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implying Yz(,),....x(tn) 4 Yi, ..+, since h is independent of the chosen permutation.

The consistency of the family of fidi’s follows if we can further show that for any non-empty
I'c{1,...,n} (write J:={1,...,n}\ 1)

for any z; € R,2 € I. If 1 € I, the above follows immediately by the definition of Y. Suppose next
that 1 € J and assume for notation simplicity that J = {1}. We need to show that
P{Y(t;)) e R,)Y(t;) <x;,2<i<n} = P{L"E_ ,Z(t;) <x;,2<i<n}
= P{L"Z ,Z(t;) <x;,2<i<n}
= P{Y(t;) <z;,2<i<n}

for any z; € R,2 <i < n, which follows directly by (2.9). Hence since the conditions of [67][Th.
1.1] are satisfied, then Y'(¢),t € R exists. By (3.1) for any t € R

Y(t) £=_,2(0) = Z2-9(0) — Z-0(—t)

implying that E{e¥®} =1, hence (y(t),t € R associated to Y (as in (1.1) with Z substituted by
Y and 7 = R) has unit Gumbel marginals and is max-stable. The stationarity of (y follows easily,
we omit the proof. 0
PrROOF OF LEMMA 4.1 For notational simplicity write J, V, W instead of Jy, V},, W},. Since J is
independent of V and a.s. W(h) = —oo, the assumption that E{e?®} = 1 implies (recall 0-co = 0
and set p =P{J = 1})

75 1= B{A) < BN E{5 = 10} < BB,
For any t; = h,...,t, € T,z € R" we have (set J =1—J)

~nH(z) = E{ ax eJV(tj)+jW(tj)—xj}

1<j<n

_ E{eV(h)—an A eJ[V(tj)—V(h)}+J[W(tj)—V(h)]_1np_g;]-}
1<j<n

— EJ max /M) =V R)+TW (1) -V (h)]-Inp—z;
1<j<n ;

where we used the fact that J, V, W are mutually independent. Hence we have (4 [ad (=, 2

Next, consider the PPP zie NEWP T,z on R X T x R7. Using the void probability formula and

dd . .
Cz [ (z,z, for any t; € T, 2, € R, 7 < n we obtain

CWP{n(t) <zl <i<n} — / W P{Ce, 4(h) < 21,1 < i < n}pu(dh)
T

= —/ InP{Cz(t:) < 2,1 <i <n}u(dh)
-

establishing the proof. O
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PROOF OF THEOREM 4.2 Define next for a random process X(s),s € T
Qi2(X) = inf argmaxlgjgnex(tj)*xf, t=(t1,....t,) €T", ze€R"

Hereafter write E{K; B} := E{KI{B}} for K some random element and B an event. Recall that
Wi (h) = —o0 a.s. and set

(7.6) Ya(t) = LV ®) + (1 — W) 2 2(t), heT.
For any x € R™ we have (recall that a.s. Wj,(h) = —oo and the indicator rv’s J;, are independent
of Wk’ Wtk)
—In H(x)
_ _ Z(tj)—x;
= E{;H{Qt,z(@ =k} max ™ }

= Y T ta\ X, ) = t’“(tk); ty — ta\ i) = tk(tk); ty —
;e [E{H{Q, (V) = k}e¥n(o). 1}+E{H{Q, (V) = k}e¥n(o). oH
= S OPUL = DE{HQu (V) = ko)
k=1

= Ze_“E{H{Qt,x(Vtk) = k}e%k(tk)HnP{th:l}}

k=1

(70)= > e " E{I{Qi.(Vi*) = k}}
k=1
= e P max (V) - i) < Vi) — i max (V) — ) < V@) - o
k=

1<i<k n>i>k

= i e‘“]P{inf argmax, <<, (®tk (t;) — IL}) = k}»

k=1
where ©,(t) :=E,V}, = Vh[h} (t) — Vh[h](h) and max;<j<1(-) = max,>i>n(-) = —00, hence the claim
follows. D
PROOF OF THEOREM 4.3 a) implies ¢):

Let Z,Z be given from (4.2). As in the proof of Theorem 2.5 for any a,h € T we have (z,,,z [

Crhz,z, hence by Lemma 8.1 in Appendix

—_ fdd - p— h
@aJrh = :a+h‘/a+h = L \:a‘/a =L @a

establishing the claim.
c) implies b):
First note that by the shift-invariance of I', for any h € 7 we have

DMy = TV — VIM(h)) = T(64).
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Further, since Jj, is independent of V}, and W}, (recall Wj,(h) = —oo a.s.), then using the shift-
invariance of I' yields

B{OE@)}) = B{MOMIBOT(5, + (1 1))
_ E{th(h)-Hn[P{Jh:l}F(Vh)} - E{F(Vh[h])} — E{I'(0y)}.
Consequently, since O, fad L"@, is valid for any a,a + h € T, then
E{e?“™NT(Z)} =E{T(Oun)} =E{I(L"O,)} = E{Z@I(L"Z)}

establishing the claim.
b) implies a):
Given tq,...,t, € T distinct and h € T by (7.7) for any x € R™

—InH(z) = —InP{(z(t:) <z, 1 <i<n} =) e E{Tx(6O,,)},

k=1
where

() := I[{inf argmax <, <, (Gtk (t;) — 371) = k}

The functional Ty is shift-invariant, hence from statement b)

E{T%(04,)} = E{Tw(L"0,-n) }

implying (set tf =t; — h)

n

~nH(z) = Y e E{Tx(L"Oy-n)}

= Z e‘”kIE{]I{inf argmaxy ;< (@tk—h(ti —h) — xl) = k}}
k=1

= Y e E{Tx(O4)} = —InP{Cs(t; — h) < z;,1 < i < n},
k=1

which proves the stationarity of (7, hence the claim follows. 0

The next result extends Lemma 2 in [23] formulated for the case d = 1 under the assumption that
a.s. Z(0) =0.

Lemma 7.1. Let Z be as in Theorem 4.5. If u is the counting measure on (k0)Z%,d > 1 with
keN,;d >0, then for any T > 0

max d [_p, —h: e@(t)
(7.8) IE{ max eZ(t)} _ 1| E ALy [T (1 —he)T] W7 (dh),
t€62n[0,T]? 0,1]¢ e®) u(ds)

f&dexle[—hiT,(l—hi)T]

with © = ZVy, pt (dh) = p(Tdh)/T?* and h = (hy,. .., hg).

PROOF OF LEMMA 7.1 Since p is a counting measure on (k6)ZN[0, T, then (set & := 6Z2N[0, T]¢)

]P’{/ e?® pu(ds) = 0, max e?) > O} =0.
Es

tes
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Consequently, with Y}, defined in (7.6) we have (recall Wj(h) = —o0 a.s.)

Z(t)
]E{maxez(t)} = / E ez(h)maxéi max eZ®) > 0 p(dh)
te€s [O,T}d f e S),LL(dS> te€s

Y5 (t)

- E{ oYn(h) OXieE € 7 Yi(t)
/[O,T]d {6 fgdeyh(s)ﬂ(ds) Itré%i(e >0 M(dh)

oYi(®)
h)% maxe ™ > 0;.J, =1
Je, € p(ds)’ tees

) Max;cg, VOV

f HACEADMEE )'Jh - 1}M(dh)

Vi (t)=Vi(h)
{ )—InE{Vj (h)} NaXteg; € },u(dh)

o
Lo
L.

0.1 T, VRVl ()

= / }na:éifie - )}u(dh)

O(t—h)
maXtEgé
= E p(dh),
fo {f&e% <ds>} )

where the last equality follows from O, 14 1he = L"©,, which is a consequence of Theorem 4.3.

Alternatively, using directly (4.4) and omitting few details, we obtain

Z(t
E{max ez(t)} = / E ez(h)m‘s() max e > 0 ¢ u(dh)
tess [0,7] fg u(ds)’ tegs

IE{ Z(h)F(Z)} g MaXies; € Lo ()
= e = .
o | Je, €90@u(ds) "

Hence the claim follows using further the fact that p is translation invariant. O

Remark 7.2. Suppose that Z(t),t € R? has cadlag sample paths. If for any compact K C R% we
have that E{sup,cx e?WY < 0o, then as in the proof above it follows that for any T > 0

Ot
E{ sup “0} 1 / g ] Ptinrann D | g,
te[0,7]d [0,1] f e®) p(ds) ’

xd_ [=hiT,(1—h;)T]

with p* (dh) = N(T'dh)/T¢ where X is the Lebesque measure on R

PROOF OF THEOREM 5.1 i) With the same notation as in (5.4), the assumption (5.1) implies for
any 0 > 0 that

_nr(h) maxyeszt €90
1 =E < 00
T1_I>IO10 od { od fRd 69(8)M5<d8) )
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where 115 denotes the counting measure on 6Z¢. Since 0u” (dh) = §%us(T'dh)/T? converges weakly
as T' — oo to the Lebesgue measure A(dh), then by (5.4), as in [23] we obtain

max d eg(t)
li RuL(dh) = E te0Z >0
755 [0,1]¢ ()i (dh) { 0% [pa €9 pis(ds) 7

hence the first claim follows. Next, let T (f) = I{inf argmax 740 714 (s) = k} for some k € 6Z°.
Clearly, I'v(f + ¢) = T'x(f) for any constant c¢. Applying Lemma 7.1 we obtain (below we set

uw=(up,...,uq) and 1 —u= (1 —uy,...,1 —uy))
1 1
Td teé%gr?[)o(j]de Td Z {6 k( )}
kedzn[o,T]4
1
9 - Y E{nre)
kesz4n|o,T]d
1
7.10 _ P O(s — k) = 0
o o B e, 068 =0)
kedz4n(o, T4
1
= 5 P O(t) =0 p64u” (d
5 Jo e {te&zdmﬁlgﬁlum (t } " (du)
1
B — [ Plumaxe() <obrdu), T
( ) — 5d [071]d {trg&az)g ()_ } (u), — 0

- %P{max@(t) _ o},

tedzd

where (7.9) follows by statement ¢) of Theorem 4.3 and (7.10) is a consequence of the assumption
that © has absolutely continuous fidi’s. Note that by (5.1) we have the almost sure convergence
max| > eszd O(1) 3 —o00 as T — oo, which implies the convergence in probability

max O(t) B maxO(t) > 0(0) =0, T — o0
tedZiN[—urT,(1—ur)T) tedza

for any up such that limy_,. ur = u € (0,1)? and thus

lim IP’{ max : ]@(t) < O} = P{max ot) < O}.
1—up)T

T—o0 tedZAN[—urT,( tesze

Since further d0¢u”(dh) converges weakly as T — oo to A(dh), then (7.11) is justified from the
validity of (8.4) below.

i1) If 6 = 0, then by Remark 7.2 the proof follows using further Lemma 8.2.

PrROOF OF LEMMA 6.1 If a.s. Z(h) = 0, then the claim is clear. Suppose therefore that Z(h)
has positive variance ¢?(h) > 0. For any distinct ¢, = h,ty,...,t, € T the df of ZI" =
(ZV(ty), ..., ZM(t,)) denoted by F}, is specified by

O

(7.12) Fp(dz) = F(dz)em *™ 2 eR",

where F is the df of Z = (Z(t1),...,Z(t,)). For any a € R" the df of the rv (a, ZI") is obtained
by tilting the Gaussian rv (a, Z). Hence from here it follows that Z[ is Gaussian with the same
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covariance matrix as Z. We calculate next E{Z"(#)}. For any t € T
E{ZVM(1)} = E{"W70N2Z1)} = E{W "MLt h) + B{Z(1)}] = r(t,h) + E{Z(1)},

where the second equality follows by Stein’s Lemma, see e.g., (3.4) in [68]. The converse follows

easily by (7.12) and is therefore omitted. O
PROOF OF THEOREM 6.5 Define My = sup,c7 e 9.8, = fT p(ds), which by our assumption
are 1v’s. Since E{e?®)} = 1,¢ € T, then a.s. M, > 0. For Y}, defined in (7.6) being both measurable
and separable, by (6.5)

(713) P{Myh > O,Syh = 0} = P{MZ > O,SZ = O} =0.

We can assume without loss of generality that P{.J, = 1} > 0. Given distinct ¢; € 7,7 < n, using
(7.13) together with the fact that a.s. V,(h) > —oo and Wj,(h) = —oo, for any z € R™ we have

—In H(x)
SZ —zp+Z(tg)
= E{ZZ max e @rtZt) Mz >0

Sy 1<k<n

—z+Z(tr).
TIE{ s, Iax e s My >O} (dh)

/ Z(h)
Yy (h
_ /E ¢
Y;
n(h

. S max e —oAYR ) Ay > O} (dh)

)
. 1<k<n
)

\“

h

th() v (t)
_ —Tk h(lk _
) ¢ e 0, = 1 )

eVn(h)

= E

\‘l

Y}
= [ e "h‘l}““””
A

- E{evh(h)+lnP{Jhl} max e—fﬂk-i-vh(tk)—vh(h)—lﬂ (fT th(s)—Vh(h)H(ds)) },u(dh)

— 2+ Vh (tk)—Va(h) —
[ Ve =Va®) u(ds) 19ken I 1}“(dh>

=

T 1<k<n
hence the proof follows. 0

PROOF OF COROLLARY 6.6 In view of statement ¢) in Theorem 4.3 L"Z,V, fad =,Vh, hence the

claim follows by (6.7). If u is the Lebesgue measure on 7, then it follows by (7.14) and the
translation invariance of u that ( is stationary. U
PROOF OF THEOREM 6.9 By the definition of the STP in [24] (see also [69, 70]) and Lemma 8.1
(see (8.2)) we have that

0 =2V, Vo' Z/(2(0)>0).

Under this setup it is easy to see that (6.17) is a re-formulation of (4.4) in terms of STP. O
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8. APPENDIX

Let (z(t),t € T be as in Section 4 where Z has representation (4.1) for some h € T, and let Y be
a random process given by

(8.1) Y(t) = JhbA(t) + (1 — Jp)B(t) —InP{J, =1}, teT,
with A, B, J, being mutually independent and P{A(h) = 0} = P{B(h) = —oc} = 1. Denote by
Cy(t),t € T the max-stable process associated to Y.

Lemma 8.1. If &y "= ¢, then A" ©,.

Proor oF LEMMA 8.1 For notational simplicity we suppress the subscript h writing simply J
instead of Jy,. Let t1,...,t,11 € T,t,1 = h be distinct and set

1

C =

With the same arguments as in the proof of Theorem 2.2, using the fact that A(h) = 0 and
B(h) = —oo almost surely, we obtain for £ > 1 and z1,...,2, € R

P{Vj € K : ¢y (t;) < xj + Ink|¢y (tn) > Ink}

S [67 Ji [P{3€ KA >0 4in(k/p) —y,J=1}+P{IjEK: B, >a; +In(k/p) —y,J =0} | e~V dy

_e—kl—p Jz [P{An+1>—y, or JjeK:A;j>x;—y,J=1}+P{Bpy1>—y, or EIjEK:B]’>Z'j_y,J:0}:| e Y dy]

— [e_é Jo[PP{3jER:Aj>a;—y}+(1—p)P{IjEK:B;>z;—y}le ¥ dy

_e—kl—p Jr[PP{0>—y, or FjeK:A;>z;—y}+(1—p)P{—00o>—y, or JjeK:B;>x;—y}le™? dy:|

— /[P{y>0, ordjeK A >z, —yt—P{3je K: A >:1:j—y}]e_ydy, k — oo
R
with £ a unit exponential rv being independent of A, hence since a.s. A(h) = 0 the proof follows.

U
Finally, we discuss the asymptotics of [, fo(2)v,(d) as n tends to infinity.

Lemma 8.2. Let v,,n > 1 be positive finite measures on R, d > 1 which converge weakly as
n — oo on each set [—k,k]4 k € N to some finite measure v. If f, fo,n > 1 is a sequence of
measurable functions on R?, then for any k € N we have

(8.3) liminf/[_kk]d fa(@)vp(dz) > / liminf f,(v)v(dz).

n—00 [—k,k]d n—00,0—x

Assume that for any u, € R n € N such that lim,, .o u, = u € B and v(R?\ B) = 0, we have
limy, oo fo(un) = f(u). If further f,,n € N is uniformly bounded on compacts of R?, then

(8.4) lim fo(x)vy(dx) = » f(z)v(dx),

n—oo R4
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provided that

(8.5) lim sup/ fn(x)vp(dx) = 0.
R\ [—k, k]

k—o00 n>1

PrROOF OF LEMMA 8.2 The first claim in (8.3) is a special case of [71][Th. 1.1]. In light of (8.5)
the claim in (8.4) can be established if we show that for any integer k

lim fn(@)vp(dz) = / f(z)v(dzr) < oo,

TS [kl [~k
which follows directly by [72][Lemma 4.2], see also [73][Lemma 6.1]. O
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