Self-avoiding random walks and Olbers' paradox
Détails
Télécharger: BIB_F9E280811492.P001.pdf (77.02 [Ko])
Etat: Public
Version: Final published version
Etat: Public
Version: Final published version
ID Serval
serval:BIB_F9E280811492
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Self-avoiding random walks and Olbers' paradox
Périodique
International Journal of Contemporary Mathematical Sciences
ISSN
1312-7586
Statut éditorial
Publié
Date de publication
2007
Peer-reviewed
Oui
Volume
2
Numéro
9
Pages
445-449
Langue
anglais
Résumé
In this paper, we prove that a self-avoiding walk of infinite length provides a structure that would resolve Olbers' paradox. That is, if the stars of a universe were distributed like the vertices of an infinite random walk with each segment length of about a parsec, then the night sky could be as dark as actually observed on the Earth. Self-avoiding random walk structure can therefore resolve the Olbers' paradox even in a static universe.
Mots-clé
Random walks, Self-avoiding random walks, Olbers' paradox
Création de la notice
09/11/2009 14:36
Dernière modification de la notice
20/08/2019 17:25