Route in Mobile WSN and Get Self-deployment for Free
Détails
Télécharger: Huguenin09DCOSS.pdf (429.05 [Ko])
Etat: Public
Version: de l'auteur⸱e
Etat: Public
Version: de l'auteur⸱e
ID Serval
serval:BIB_EBE903741E4C
Type
Actes de conférence (partie): contribution originale à la littérature scientifique, publiée à l'occasion de conférences scientifiques, dans un ouvrage de compte-rendu (proceedings), ou dans l'édition spéciale d'un journal reconnu (conference proceedings).
Collection
Publications
Institution
Titre
Route in Mobile WSN and Get Self-deployment for Free
Titre de la conférence
Proceedings of the 5th IEEE/ACM International Conference on Distributed Computing in Sensor Systems (DCOSS)
Editeur
Springer
Adresse
Marina del Rey, CA, USA
ISBN
978-3-642-02084-1
978-3-642-02085-8
978-3-642-02085-8
ISSN
0302-9743
1611-3349
1611-3349
Statut éditorial
Publié
Date de publication
2009
Peer-reviewed
Oui
Volume
5516
Série
Lecture Notes in Computer Science
Pages
201-215
Langue
anglais
Résumé
We consider a system consisting of a set of mobile sensors. They are disseminated in a region of interest and their mobility is controlled (as opposed to mobility imposed by the entity on which they are embedded). A routing protocol in this context enables any point of the region to be reached starting from any node, regardless of the initial sensor deployment. This operation involves message forwarding and/or sensor motion. In this paper we present Grasp, a GReedy stAteless Routing Protocol for mobile wireless sensor networks (WSN). Grasp is simple and independent from the underlying communication model, but still provides results close to the optimal, with respect to the self-deployment of sensors over a given region. It ensures that (i) routing is always possible in a mobile WSN irrespective of the number of sensors, and (ii) above a given number of sensors in a considered zone the protocol eventually enables the routing to no longer require sensors to move, which yields to self-deployment. With Grasp, sensors autonomously reach a stable full coverage following geometrical patterns. This requires only 1.5 times the optimal number of sensors to cover a region. A theoretical analysis of convergence proves these properties. Simulation results matching the analysis are also presented.
Création de la notice
06/12/2016 14:52
Dernière modification de la notice
20/08/2019 16:14