Climate-invariant machine learning.

Détails

Ressource 1Télécharger: sciadv.adj7250.pdf (3379.93 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY-NC 4.0
ID Serval
serval:BIB_E422A7BB1B25
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Climate-invariant machine learning.
Périodique
Science advances
Auteur⸱e⸱s
Beucler T., Gentine P., Yuval J., Gupta A., Peng L., Lin J., Yu S., Rasp S., Ahmed F., O'Gorman P.A., Neelin J.D., Lutsko N.J., Pritchard M.
ISSN
2375-2548 (Electronic)
ISSN-L
2375-2548
Statut éditorial
Publié
Date de publication
09/02/2024
Peer-reviewed
Oui
Volume
10
Numéro
6
Pages
eadj7250
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed "climate-invariant" ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.
Pubmed
Open Access
Oui
Création de la notice
12/02/2024 11:22
Dernière modification de la notice
21/08/2024 6:35
Données d'usage