Clinical sign and biomarker-based algorithm to identify bacterial pneumonia among outpatients with lower respiratory tract infection in Tanzania.

Détails

Ressource 1Télécharger: 34991507_BIB_E3882B93DED8.pdf (2571.52 [Ko])
Etat: Public
Version: Final published version
Licence: CC BY 4.0
ID Serval
serval:BIB_E3882B93DED8
Type
Article: article d'un périodique ou d'un magazine.
Collection
Publications
Institution
Titre
Clinical sign and biomarker-based algorithm to identify bacterial pneumonia among outpatients with lower respiratory tract infection in Tanzania.
Périodique
BMC infectious diseases
Auteur⸱e⸱s
Hogendoorn SKL, Lhopitallier L., Richard-Greenblatt M., Tenisch E., Mbarack Z., Samaka J., Mlaganile T., Mamin A., Genton B., Kaiser L., D'Acremont V., Kain K.C., Boillat-Blanco N.
ISSN
1471-2334 (Electronic)
ISSN-L
1471-2334
Statut éditorial
Publié
Date de publication
06/01/2022
Peer-reviewed
Oui
Volume
22
Numéro
1
Pages
39
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
Inappropriate antibiotics use in lower respiratory tract infections (LRTI) is a major contributor to resistance. We aimed to design an algorithm based on clinical signs and host biomarkers to identify bacterial community-acquired pneumonia (CAP) among patients with LRTI.
Participants with LRTI were selected in a prospective cohort of febrile (≥ 38 °C) adults presenting to outpatient clinics in Dar es Salaam. Participants underwent chest X-ray, multiplex PCR for respiratory pathogens, and measurements of 13 biomarkers. We evaluated the predictive accuracy of clinical signs and biomarkers using logistic regression and classification and regression tree analysis.
Of 110 patients with LRTI, 17 had bacterial CAP. Procalcitonin (PCT), interleukin-6 (IL-6) and soluble triggering receptor expressed by myeloid cells-1 (sTREM-1) showed an excellent predictive accuracy to identify bacterial CAP (AUROC 0.88, 95%CI 0.78-0.98; 0.84, 0.72-0.99; 0.83, 0.74-0.92, respectively). Combining respiratory rate with PCT or IL-6 significantly improved the model compared to respiratory rate alone (p = 0.006, p = 0.033, respectively). An algorithm with respiratory rate (≥ 32/min) and PCT (≥ 0.25 μg/L) had 94% sensitivity and 82% specificity.
PCT, IL-6 and sTREM-1 had an excellent predictive accuracy in differentiating bacterial CAP from other LRTIs. An algorithm combining respiratory rate and PCT displayed even better performance in this sub-Sahara African setting.
Mots-clé
Algorithms, Biomarkers, C-Reactive Protein/analysis, Humans, Outpatients, Pneumonia, Bacterial/diagnosis, Prospective Studies, Respiratory Tract Infections/diagnosis, Tanzania, Bacterial community-acquired pneumonia, PCT, Predicting algorithm
Pubmed
Web of science
Open Access
Oui
Création de la notice
14/01/2022 18:25
Dernière modification de la notice
23/11/2022 7:16
Données d'usage